These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 26781941)
1. Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms. Erkenbrack EM; Ako-Asare K; Miller E; Tekelenburg S; Thompson JR; Romano L Dev Genes Evol; 2016 Jan; 226(1):37-45. PubMed ID: 26781941 [TBL] [Abstract][Full Text] [Related]
2. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins. Erkenbrack EM Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7202-E7211. PubMed ID: 27810959 [TBL] [Abstract][Full Text] [Related]
3. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. McCauley BS; Weideman EP; Hinman VF Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847 [TBL] [Abstract][Full Text] [Related]
5. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Shashikant T; Khor JM; Ettensohn CA Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451 [TBL] [Abstract][Full Text] [Related]
6. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids. Erkenbrack EM; Davidson EH; Peter IS Development; 2018 Dec; 145(24):. PubMed ID: 30470703 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses. Erkenbrack EM; Davidson EH Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4075-84. PubMed ID: 26170318 [TBL] [Abstract][Full Text] [Related]
8. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network. Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786 [TBL] [Abstract][Full Text] [Related]
9. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Hinman VF; Nguyen AT; Cameron RA; Davidson EH Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011 [TBL] [Abstract][Full Text] [Related]
10. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution. Ettensohn CA; Guerrero-Santoro J; Khor JM Curr Top Dev Biol; 2022; 146():113-148. PubMed ID: 35152981 [TBL] [Abstract][Full Text] [Related]
11. Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system. Bishop CD; MacNeil KE; Patel D; Taylor VJ; Burke RD Dev Biol; 2013 May; 377(1):236-44. PubMed ID: 23506838 [TBL] [Abstract][Full Text] [Related]
12. Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate. Yamazaki A; Kidachi Y; Yamaguchi M; Minokawa T Development; 2014 Jul; 141(13):2669-79. PubMed ID: 24924196 [TBL] [Abstract][Full Text] [Related]
13. Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins. Thompson JR; Erkenbrack EM; Hinman VF; McCauley BS; Petsios E; Bottjer DJ Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5870-5877. PubMed ID: 28584090 [TBL] [Abstract][Full Text] [Related]
14. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins. Hinman VF; Nguyen A; Davidson EH Dev Biol; 2007 Dec; 312(2):584-95. PubMed ID: 17956756 [TBL] [Abstract][Full Text] [Related]
15. The genomic regulatory control of skeletal morphogenesis in the sea urchin. Rafiq K; Cheers MS; Ettensohn CA Development; 2012 Feb; 139(3):579-90. PubMed ID: 22190640 [TBL] [Abstract][Full Text] [Related]
16. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms. Hinman VF; Cheatle Jarvela AM Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884 [TBL] [Abstract][Full Text] [Related]
17. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network. Sun Z; Ettensohn CA Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514 [TBL] [Abstract][Full Text] [Related]
18. Architecture and evolution of the Khor JM; Ettensohn CA Elife; 2022 Feb; 11():. PubMed ID: 35212624 [TBL] [Abstract][Full Text] [Related]
19. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons. Koga H; Matsubara M; Fujitani H; Miyamoto N; Komatsu M; Kiyomoto M; Akasaka K; Wada H Dev Genes Evol; 2010 Sep; 220(3-4):107-15. PubMed ID: 20680330 [TBL] [Abstract][Full Text] [Related]
20. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development. Sharma T; Ettensohn CA Development; 2011 Jun; 138(12):2581-90. PubMed ID: 21610034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]