These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26781977)

  • 1. Native low density lipoprotein promotes lipid raft formation in macrophages.
    Song J; Ping LY; Duong DM; Gao XY; He CY; Wei L; Wu JZ
    Mol Med Rep; 2016 Mar; 13(3):2087-93. PubMed ID: 26781977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E-LDL and Ox-LDL differentially regulate ceramide and cholesterol raft microdomains in human Macrophages.
    Grandl M; Bared SM; Liebisch G; Werner T; Barlage S; Schmitz G
    Cytometry A; 2006 Mar; 69(3):189-91. PubMed ID: 16479605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of cholesterol-enriched microdomains in class A scavenger receptor-mediated responses in human macrophages.
    Kiyanagi T; Iwabuchi K; Shimada K; Hirose K; Miyazaki T; Sumiyoshi K; Iwahara C; Nakayama H; Masuda H; Mokuno H; Sato S; Daida H
    Atherosclerosis; 2011 Mar; 215(1):60-9. PubMed ID: 21215400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of stress proteins in mouse peritoneal macrophages by oxidized low-density lipoprotein.
    Yamaguchi M; Sato H; Bannai S
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1198-201. PubMed ID: 8323542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of redox regulation and lipid rafts in macrophages during Ox-LDL-mediated foam cell formation.
    Schmitz G; Grandl M
    Antioxid Redox Signal; 2007 Sep; 9(9):1499-518. PubMed ID: 17600463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal proteomics profiling of lipid rafts in CCR6-activated T cells reveals the integration of actin cytoskeleton dynamics.
    Lin SL; Chien CW; Han CL; Chen ES; Kao SH; Chen YJ; Liao F
    J Proteome Res; 2010 Jan; 9(1):283-97. PubMed ID: 19928914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between LDL oxidation and macrophage myeloperoxidase activity.
    Wu J; Liu Y; Li X; Chen L; Xia L; Hong J
    Chin Med J (Engl); 2003 May; 116(5):791-3. PubMed ID: 12875704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimally modified low-density lipoprotein induces macrophage endoplasmic reticulum stress via toll-like receptor 4.
    Yao S; Yang N; Song G; Sang H; Tian H; Miao C; Zhang Y; Qin S
    Biochim Biophys Acta; 2012 Jul; 1821(7):954-63. PubMed ID: 22480542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid raft-dependent endocytosis: a new route for hepcidin-mediated regulation of ferroportin in macrophages.
    Auriac A; Willemetz A; Canonne-Hergaux F
    Haematologica; 2010 Aug; 95(8):1269-77. PubMed ID: 20220061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of oxidized low- and high-density lipoproteins on gene expression of human macrophages.
    Levula M; Jaakkola O; Luomala M; Nikkari ST; Lehtimäki T
    Scand J Clin Lab Invest; 2006; 66(6):497-508. PubMed ID: 17000557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipoprotein lipase-dependent binding and uptake of low density lipoproteins by THP-1 monocytes and macrophages: possible involvement of lipid rafts.
    Makoveichuk E; Castel S; Vilaró S; Olivecrona G
    Biochim Biophys Acta; 2004 Nov; 1686(1-2):37-49. PubMed ID: 15522821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL): Implications for foam cell formation in atherosclerosis.
    Ismael FO; Proudfoot JM; Brown BE; van Reyk DM; Croft KD; Davies MJ; Hawkins CL
    Arch Biochem Biophys; 2015 May; 573():40-51. PubMed ID: 25795019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of saturation dye 2D-DIGE proteomics to characterize proteins modulated by oxidized low density lipoprotein treatment of human macrophages.
    Dupont A; Chwastyniak M; Beseme O; Guihot AL; Drobecq H; Amouyel P; Pinet F
    J Proteome Res; 2008 Aug; 7(8):3572-82. PubMed ID: 18549265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human macrophages limit oxidation products in low density lipoprotein.
    Hultén LM; Ullström C; Krettek A; van Reyk D; Marklund SL; Dahlgren C; Wiklund O
    Lipids Health Dis; 2005 Mar; 4():6. PubMed ID: 15745457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances and challenges in understanding the role of the lipid raft proteome in human health.
    Mohamed A; Robinson H; Erramouspe PJ; Hill MM
    Expert Rev Proteomics; 2018 Dec; 15(12):1053-1063. PubMed ID: 30403891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophage Differentiation from Monocytes Is Influenced by the Lipid Oxidation Degree of Low Density Lipoprotein.
    Seo JW; Yang EJ; Yoo KH; Choi IH
    Mediators Inflamm; 2015; 2015():235797. PubMed ID: 26294848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidized low density lipoprotein suppresses the expression of tumor necrosis factor-alpha mRNA in stimulated murine peritoneal macrophages.
    Hamilton TA; Ma GP; Chisolm GM
    J Immunol; 1990 Mar; 144(6):2343-50. PubMed ID: 2313095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization and regulation of SR-BI in membrane rafts of HepG2 cells.
    Rhainds D; Bourgeois P; Bourret G; Huard K; Falstrault L; Brissette L
    J Cell Sci; 2004 Jul; 117(Pt 15):3095-105. PubMed ID: 15226391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EP24.15 is associated with lipid rafts.
    Jeske NA; Glucksman MJ; Roberts JL
    J Neurosci Res; 2003 Nov; 74(3):468-73. PubMed ID: 14598323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that membrane rafts are not required for the action of Clostridium perfringens enterotoxin.
    Caserta JA; Hale ML; Popoff MR; Stiles BG; McClane BA
    Infect Immun; 2008 Dec; 76(12):5677-85. PubMed ID: 18809663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.