These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26782220)

  • 1. Monitoring Intracellular Oxygen Concentration: Implications for Hypoxia Studies and Real-Time Oxygen Monitoring.
    Potter M; Badder L; Hoade Y; Johnston IG; Morten KJ
    Adv Exp Med Biol; 2016; 876():257-263. PubMed ID: 26782220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.
    Mookerjee SA; Gerencser AA; Nicholls DG; Brand MD
    J Biol Chem; 2017 Apr; 292(17):7189-7207. PubMed ID: 28270511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rubella Viruses Shift Cellular Bioenergetics to a More Oxidative and Glycolytic Phenotype with a Strain-Specific Requirement for Glutamine.
    Bilz NC; Jahn K; Lorenz M; Lüdtke A; Hübschen JM; Geyer H; Mankertz A; Hübner D; Liebert UG; Claus C
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29950419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention.
    Yang M; Chadwick AE; Dart C; Kamishima T; Quayle JM
    PLoS One; 2017; 12(5):e0177951. PubMed ID: 28542339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warburg and Crabtree effects in premalignant Barrett's esophagus cell lines with active mitochondria.
    Suchorolski MT; Paulson TG; Sanchez CA; Hockenbery D; Reid BJ
    PLoS One; 2013; 8(2):e56884. PubMed ID: 23460817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic bioenergetic alterations in colorectal adenomatous polyps and adenocarcinomas.
    Lin WR; Chiang JM; Lim SN; Su MY; Chen TH; Huang SW; Chen CW; Wu RC; Tsai CL; Lin YH; Alison MR; Hsieh SY; Yu JS; Chiu CT; Yeh CT
    EBioMedicine; 2019 Jun; 44():334-345. PubMed ID: 31122841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioenergetic Adaptations in Chemoresistant Ovarian Cancer Cells.
    Dar S; Chhina J; Mert I; Chitale D; Buekers T; Kaur H; Giri S; Munkarah A; Rattan R
    Sci Rep; 2017 Aug; 7(1):8760. PubMed ID: 28821788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line.
    Dier U; Shin DH; Hemachandra LP; Uusitalo LM; Hempel N
    PLoS One; 2014; 9(5):e98479. PubMed ID: 24858344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration.
    Sheard MA; Ghent MV; Cabral DJ; Lee JC; Khankaldyyan V; Ji L; Wu SQ; Kang MH; Sposto R; Asgharzadeh S; Reynolds CP
    Exp Cell Res; 2015 May; 334(1):78-89. PubMed ID: 25845499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycolytic suppression dramatically changes the intracellular metabolic profile of multiple cancer cell lines in a mitochondrial metabolism-dependent manner.
    Shiratori R; Furuichi K; Yamaguchi M; Miyazaki N; Aoki H; Chibana H; Ito K; Aoki S
    Sci Rep; 2019 Dec; 9(1):18699. PubMed ID: 31822748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature induces significant changes in both glycolytic reserve and mitochondrial spare respiratory capacity in colorectal cancer cell lines.
    Mitov MI; Harris JW; Alstott MC; Zaytseva YY; Evers BM; Butterfield DA
    Exp Cell Res; 2017 May; 354(2):112-121. PubMed ID: 28342898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Evidence of the Link Between Energetic Metabolism and Proliferation Capacity of Cancer Cells In Vitro.
    De Preter G; Danhier P; Porporato PE; Payen VL; Jordan BF; Sonveaux P; Gallez B
    Adv Exp Med Biol; 2016; 876():209-214. PubMed ID: 26782214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells.
    Wu M; Neilson A; Swift AL; Moran R; Tamagnine J; Parslow D; Armistead S; Lemire K; Orrell J; Teich J; Chomicz S; Ferrick DA
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C125-36. PubMed ID: 16971499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.
    Epstein T; Xu L; Gillies RJ; Gatenby RA
    Cancer Metab; 2014; 2():7. PubMed ID: 24982758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studying the Metabolism of Epithelial-Mesenchymal Plasticity Using the Seahorse XFe96 Extracellular Flux Analyzer.
    Bhatia S; Thompson EW; Gunter JH
    Methods Mol Biol; 2021; 2179():327-340. PubMed ID: 32939731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
    Guido C; Whitaker-Menezes D; Lin Z; Pestell RG; Howell A; Zimmers TA; Casimiro MC; Aquila S; Ando' S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Oncotarget; 2012 Aug; 3(8):798-810. PubMed ID: 22878233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial membrane cholesterol, the voltage dependent anion channel (VDAC), and the Warburg effect.
    Campbell AM; Chan SH
    J Bioenerg Biomembr; 2008 Jun; 40(3):193-7. PubMed ID: 18677555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines.
    Herst PM; Berridge MV
    Biochim Biophys Acta; 2007 Feb; 1767(2):170-7. PubMed ID: 17266920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor necrosis factor alpha increases aerobic glycolysis and reduces oxidative metabolism in prostate epithelial cells.
    Vaughan RA; Garcia-Smith R; Trujillo KA; Bisoffi M
    Prostate; 2013 Oct; 73(14):1538-46. PubMed ID: 23818177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.