These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26782258)

  • 1. The Impact of Specification Error on the Estimation, Testing, and Improvement of Structural Equation Models.
    Kaplan D
    Multivariate Behav Res; 1988 Jan; 23(1):69-86. PubMed ID: 26782258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROBUSTNESS CONDITIONS FOR MIIV-2SLS WHEN THE LATENT VARIABLE OR MEASUREMENT MODEL IS STRUCTURALLY MISSPECIFIED.
    Bollen KA; Gates KM; Fisher Z
    Struct Equ Modeling; 2018; 25(6):848-859. PubMed ID: 30573943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing estimators for latent interaction models under structural and distributional misspecifications.
    Brandt H; Umbach N; Kelava A; Bollen KA
    Psychol Methods; 2020 Jun; 25(3):321-345. PubMed ID: 31670539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Instrumental Variable (IV) Tests to Evaluate Model Specification in Latent Variable Structural Equation Models.
    Kirby JB; Bollen KA
    Sociol Methodol; 2009 Jul; 39(1):327-355. PubMed ID: 20419054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population performance of SEM parceling strategies under measurement and structural model misspecification.
    Rhemtulla M
    Psychol Methods; 2016 Sep; 21(3):348-368. PubMed ID: 26828780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Study of the Sampling Variability and z-Values of Parameter Estimates From Misspecified Structural Equation Models.
    Kaplan D
    Multivariate Behav Res; 1989 Jan; 24(1):41-57. PubMed ID: 26794295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Factorial Evaluation of Effects of Model Specification and Error on Parameter Estimation in a Structural Equation Model.
    Farley JU; Reddy SK
    Multivariate Behav Res; 1987 Jan; 22(1):71-90. PubMed ID: 26811010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Noncentral Chi-square Distribution in Misspecified Structural Equation Models: Finite Sample Results from a Monte Carlo Simulation.
    Curran PJ; Bollen KA; Paxton P; Kirby J; Chen F
    Multivariate Behav Res; 2002 Jan; 37(1):1-36. PubMed ID: 26824167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How the 2SLS/IV estimator can handle equality constraints in structural equation models: a system-of-equations approach.
    Nestler S
    Br J Math Stat Psychol; 2014 May; 67(2):353-69. PubMed ID: 24033324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved test of latent-variable model misspecification in structural measurement error models for group testing data.
    Huang X
    Stat Med; 2009 Nov; 28(26):3316-27. PubMed ID: 19691036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited Information Parameter Estimates for Latent or Mixed Manifest and Latent Variable Models.
    Lance CE; Cornwell JM; Mulaik SA
    Multivariate Behav Res; 1988 Apr; 23(2):171-87. PubMed ID: 26764944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model Implied Instrumental Variables (MIIVs): An Alternative Orientation to Structural Equation Modeling.
    Bollen KA
    Multivariate Behav Res; 2019; 54(1):31-46. PubMed ID: 30222004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An introduction to model implied instrumental variables using two stage least squares (MIIV-2SLS) in structural equation models (SEMs).
    Bollen KA; Fisher ZF; Giordano ML; Lilly AG; Luo L; Ye A
    Psychol Methods; 2022 Oct; 27(5):752-772. PubMed ID: 34323584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural equation modeling with small sample sizes using two-stage ridge least-squares estimation.
    Jung S
    Behav Res Methods; 2013 Mar; 45(1):75-81. PubMed ID: 22528958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables.
    Katsikatsou M; Moustaki I
    Psychometrika; 2016 Dec; 81(4):1046-1068. PubMed ID: 27734296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the likelihood ratio test in structural equation modeling when parameters are subject to boundary constraints.
    Stoel RD; Garre FG; Dolan C; van den Wittenboer G
    Psychol Methods; 2006 Dec; 11(4):439-55. PubMed ID: 17154756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Estimation Methods on SEM Fit Indices.
    Shi D; Maydeu-Olivares A
    Educ Psychol Meas; 2020 Jun; 80(3):421-445. PubMed ID: 32425213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-implied simulation-based power estimation for correctly specified and distributionally misspecified models: Applications to nonlinear and linear structural equation models.
    Irmer JP; Klein AG; Schermelleh-Engel K
    Behav Res Methods; 2024 Dec; 56(8):8955-8991. PubMed ID: 39354129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretic Fit and Empirical Fit: The Performance of Maximum Likelihood versus Generalized Least Squares Estimation in Structural Equation Models.
    Olsson UH; Troye SV; Howell RD
    Multivariate Behav Res; 1999 Jan; 34(1):31-58. PubMed ID: 26825128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison of Regularized Maximum-Likelihood, Regularized 2-Stage Least Squares, and Maximum-Likelihood Estimation with Misspecified Models, Small Samples, and Weak Factor Structure.
    Finch WH; Miller JE
    Multivariate Behav Res; 2021; 56(4):608-626. PubMed ID: 32324059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.