BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 26782523)

  • 1. Transcriptomic analysis of Camellia ptilophylla and identification of genes associated with flavonoid and caffeine biosynthesis.
    Li MM; Xue JY; Wen YL; Guo HS; Sun XQ; Zhang YM; Hang YY
    Genet Mol Res; 2015 Dec; 14(4):18731-42. PubMed ID: 26782523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera).
    Tai Y; Wei C; Yang H; Zhang L; Chen Q; Deng W; Wei S; Zhang J; Fang C; Ho C; Wan X
    BMC Plant Biol; 2015 Aug; 15():190. PubMed ID: 26245644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Ultraviolet A/B Treatments on Anthocyanin Accumulation and Gene Expression in Dark-Purple Tea Cultivar 'Ziyan' (
    Li W; Tan L; Zou Y; Tan X; Huang J; Chen W; Tang Q
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31952238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo transcriptome and phytochemical analyses reveal differentially expressed genes and characteristic secondary metabolites in the original oolong tea (Camellia sinensis) cultivar 'Tieguanyin' compared with cultivar 'Benshan'.
    Guo Y; Zhu C; Zhao S; Zhang S; Wang W; Fu H; Li X; Zhou C; Chen L; Lin Y; Lai Z
    BMC Genomics; 2019 Apr; 20(1):265. PubMed ID: 30943892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.).
    Hong G; Wang J; Zhang Y; Hochstetter D; Zhang S; Pan Y; Shi Y; Xu P; Wang Y
    Plant Physiol Biochem; 2014 May; 78():49-52. PubMed ID: 24632491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis).
    Li CF; Zhu Y; Yu Y; Zhao QY; Wang SJ; Wang XC; Yao MZ; Luo D; Li X; Chen L; Yang YJ
    BMC Genomics; 2015 Jul; 16(1):560. PubMed ID: 26220550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions among chemical components of Cocoa tea (Camellia ptilophylla Chang), a naturally low caffeine-containing tea species.
    Lin X; Chen Z; Zhang Y; Gao X; Luo W; Li B
    Food Funct; 2014 Jun; 5(6):1175-85. PubMed ID: 24699984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading.
    Liu L; Li Y; She G; Zhang X; Jordan B; Chen Q; Zhao J; Wan X
    BMC Plant Biol; 2018 Oct; 18(1):233. PubMed ID: 30314466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptomic analysis reveals the regulatory mechanisms of catechins synthesis in different cultivars of Camellia sinensis.
    Zhao LQ; Shan CM; Shan TY; Li QL; Ma KL; Deng WW; Wu JW
    Food Res Int; 2022 Jul; 157():111375. PubMed ID: 35761630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis.
    Wang P; Zhang L; Jiang X; Dai X; Xu L; Li T; Xing D; Li Y; Li M; Gao L; Xia T
    Planta; 2018 Jan; 247(1):139-154. PubMed ID: 28887677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hongyacha, a Naturally Caffeine-Free Tea Plant from Fujian, China.
    Jin JQ; Chai YF; Liu YF; Zhang J; Yao MZ; Chen L
    J Agric Food Chem; 2018 Oct; 66(43):11311-11319. PubMed ID: 30303011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze].
    Rani A; Singh K; Ahuja PS; Kumar S
    Gene; 2012 Mar; 495(2):205-10. PubMed ID: 22226811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development.
    Guo F; Guo Y; Wang P; Wang Y; Ni D
    Planta; 2017 Dec; 246(6):1139-1152. PubMed ID: 28825226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into Catechins Metabolic Pathways of Camellia sinensis Based on Genome and Transcriptome Analysis.
    Wang W; Zhou Y; Wu Y; Dai X; Liu Y; Qian Y; Li M; Jiang X; Wang Y; Gao L; Xia T
    J Agric Food Chem; 2018 Apr; 66(16):4281-4293. PubMed ID: 29606002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine Content and Related Gene Expression: Novel Insight into Caffeine Metabolism in Camellia Plants Containing Low, Normal, and High Caffeine Concentrations.
    Zhu B; Chen LB; Lu M; Zhang J; Han J; Deng WW; Zhang ZZ
    J Agric Food Chem; 2019 Mar; 67(12):3400-3411. PubMed ID: 30830771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiomics analysis of the mechanisms behind flavonoid differences between purple and green tender shoots of Camellia sinensis var. assamica.
    Liu ZW; Shi XY; Duan SM; Nian B; Chen LJ; Zhang GH; Lv CY; Ma Y; Zhao M
    G3 (Bethesda); 2023 Feb; 13(2):. PubMed ID: 36342187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomic and Transcriptomic Analyses Reveal the Characteristics of Tea Flavonoids and Caffeine Accumulation and Regulation between Chinese Varieties (
    Tang H; Zhang M; Liu J; Cai J
    Genes (Basel); 2022 Oct; 13(11):. PubMed ID: 36360231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Transcriptomic Analysis Reveals Regulatory Mechanisms of Theanine Synthesis in Tea (
    Tai Y; Ling C; Wang H; Yang L; She G; Wang C; Yu S; Chen W; Liu C; Wan X
    J Agric Food Chem; 2019 Sep; 67(36):10235-10244. PubMed ID: 31436988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis.
    Wu ZJ; Li XH; Liu ZW; Xu ZS; Zhuang J
    BMC Plant Biol; 2014 Oct; 14():277. PubMed ID: 25316555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways.
    Punyasiri PA; Abeysinghe IS; Kumar V; Treutter D; Duy D; Gosch C; Martens S; Forkmann G; Fischer TC
    Arch Biochem Biophys; 2004 Nov; 431(1):22-30. PubMed ID: 15464723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.