BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 26782634)

  • 21. Doripenem activity tested against a global collection of Enterobacteriaceae, including isolates resistant to other extended-spectrum agents.
    Mendes RE; Rhomberg PR; Bell JM; Turnidge JD; Sader HS
    Diagn Microbiol Infect Dis; 2009 Apr; 63(4):415-25. PubMed ID: 19249175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of the Different Plasmid-Mediated AmpC Beta-Lactamase Genotypes on the Phenotypic Detection of ESBL in Enterobacteriaceae Isolates.
    Adel H; Elewa A; Mashaly M
    Clin Lab; 2022 Dec; 68(12):. PubMed ID: 36546742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the new VITEK 2 extended-spectrum beta-lactamase (ESBL) test for rapid detection of ESBL production in Enterobacteriaceae isolates.
    Spanu T; Sanguinetti M; Tumbarello M; D'Inzeo T; Fiori B; Posteraro B; Santangelo R; Cauda R; Fadda G
    J Clin Microbiol; 2006 Sep; 44(9):3257-62. PubMed ID: 16954257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection and molecular characterisation of extended-spectrum β-lactamase-producing enteric bacteria from pigs and chickens in Nsukka, Nigeria.
    Chah KF; Ugwu IC; Okpala A; Adamu KY; Alonso CA; Ceballos S; Nwanta JN; Torres C
    J Glob Antimicrob Resist; 2018 Dec; 15():36-40. PubMed ID: 29908916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Occurrence and characteristics of extended-spectrum-β-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses.
    Dierikx CM; van Duijkeren E; Schoormans AH; van Essen-Zandbergen A; Veldman K; Kant A; Huijsdens XW; van der Zwaluw K; Wagenaar JA; Mevius DJ
    J Antimicrob Chemother; 2012 Jun; 67(6):1368-74. PubMed ID: 22382469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screening extended-spectrum beta-lactamase production in Enterobacter cloacae and Serratia marcescens using antibiogram-based methods.
    Su PA; Wu LT; Cheng KC; Ko WC; Chuang YC; Yu WL
    J Microbiol Immunol Infect; 2010 Feb; 43(1):26-34. PubMed ID: 20434120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome analysis of enterobacteriaceae with non-wild type susceptibility to third-generation cephalosporins recovered from diseased dogs and cats in Europe.
    Pepin-Puget L; El Garch F; Bertrand X; Valot B; Hocquet D
    Vet Microbiol; 2020 Mar; 242():108601. PubMed ID: 32122604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increase in resistance to extended-spectrum cephalosporins in Salmonella isolated from retail chicken products in Japan.
    Noda T; Murakami K; Etoh Y; Okamoto F; Yatsuyanagi J; Sera N; Furuta M; Onozuka D; Oda T; Asai T; Fujimoto S
    PLoS One; 2015; 10(2):e0116927. PubMed ID: 25642944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI screening parameters for the detection of extended-spectrum β-lactamase production in clinical Enterobacteriaceae isolates.
    Polsfuss S; Bloemberg GV; Giger J; Meyer V; Hombach M
    J Antimicrob Chemother; 2012 Jan; 67(1):159-66. PubMed ID: 21972269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a real-time SYBRGreen PCR assay for rapid detection of acquired AmpC in Enterobacteriaceae.
    Brolund A; Wisell KT; Edquist PJ; Elfström L; Walder M; Giske CG
    J Microbiol Methods; 2010 Sep; 82(3):229-33. PubMed ID: 20600365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prevalence of plasmid-mediated AmpC β-lactamase-producing Escherichia coli and spread of the ST131 clone among extended-spectrum β-lactamase-producing E. coli in Japan.
    Matsumura Y; Yamamoto M; Higuchi T; Komori T; Tsuboi F; Hayashi A; Sugimoto Y; Hotta G; Matsushima A; Nagao M; Takakura S; Ichiyama S
    Int J Antimicrob Agents; 2012 Aug; 40(2):158-62. PubMed ID: 22743014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Risk factors of community-onset urinary tract infections caused by plasmid-mediated AmpC β-lactamase-producing Enterobacteriaceae.
    Lee CH; Lee YT; Kung CH; Ku WW; Kuo SC; Chen TL; Fung CP
    J Microbiol Immunol Infect; 2015 Jun; 48(3):269-75. PubMed ID: 24239065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prevalence and molecular characteristics of ESBL and AmpC β -lactamase producing Enterobacteriaceae strains isolated from UTIs in Egypt.
    Mohamed ES; Khairy RMM; Abdelrahim SS
    Antimicrob Resist Infect Control; 2020 Dec; 9(1):198. PubMed ID: 33303028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genotypic analysis of plasmid-mediated beta-lactamases amongst Enterobacteriaceae other than Escherichia spp. and Klebsiella spp. that are non-susceptible to a broad-spectrum cephalosporin.
    Kiratisin P; Henprasert A
    Int J Antimicrob Agents; 2010 Oct; 36(4):343-7. PubMed ID: 20688485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular characterization of extended-spectrum β-lactamase, plasmid-mediated AmpC cephalosporinase and carbapenemase genes among Enterobacteriaceae isolates in five medical centres of East and West Azerbaijan, Iran.
    Sadeghi MR; Ghotaslou R; Akhi MT; Asgharzadeh M; Hasani A
    J Med Microbiol; 2016 Nov; 65(11):1322-1331. PubMed ID: 27655293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular characterization and epidemiology of cefoxitin resistance among Enterobacteriaceae lacking inducible chromosomal ampC genes from hospitalized and non-hospitalized patients in Algeria: description of new sequence type in Klebsiella pneumoniae isolates.
    Gharout-Sait A; Touati A; Guillard T; Brasme L; de Champs C
    Braz J Infect Dis; 2015; 19(2):187-95. PubMed ID: 25636192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro efficacy of cephamycins against multiple extended-spectrum β-lactamase-producing Klebsiella pneumoniae, Proteus mirabilis, and Enterobacter cloacae isolates from dogs and cats.
    Kusumoto M; Kanao Y; Narita H; Jitsuiki M; Iyori K; Tsunoi M; Tsuyuki Y; Torii K; Harada K
    J Vet Med Sci; 2023 Jun; 85(6):653-656. PubMed ID: 37150609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel disk-based detection method with superior sensitivity for β-lactamase production in third-generation cephalosporin-resistant Enterobacteriaceae.
    Sakanashi D; Miyazaki N; Kawamoto Y; Ohno T; Yamada A; Koita I; Suematsu H; Hagihara M; Asai N; Koizumi Y; Yamagishi Y; Mikamo H
    J Infect Chemother; 2019 May; 25(5):330-336. PubMed ID: 30797690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of plasmid-mediated β-lactamases in fecal colonizing patients in the hospital and community setting in Spain.
    Garrido A; Seral C; Gude MJ; Casado C; González-Domínguez M; Sáenz Y; Castillo FJ
    Microb Drug Resist; 2014 Aug; 20(4):301-4. PubMed ID: 24328895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of β-Lactamase Resistance Determinants in Enterobacteriaceae from Chicago Children: a Multicenter Survey.
    Logan LK; Hujer AM; Marshall SH; Domitrovic TN; Rudin SD; Zheng X; Qureshi NK; Hayden MK; Scaggs FA; Karadkhele A; Bonomo RA
    Antimicrob Agents Chemother; 2016 Jun; 60(6):3462-9. PubMed ID: 27021322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.