These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26783034)

  • 1. Enhanced near-infrared shielding ability of (Li,K)-codoped WO3 for smart windows: DFT prediction validated by experiment.
    Yang C; Chen JF; Zeng X; Cheng D; Huan H; Cao D
    Nanotechnology; 2016 Feb; 27(7):075203. PubMed ID: 26783034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Humidity-Sensing Performance of 3DOM WO
    Wang Z; Fan X; Li C; Men G; Han D; Gu F
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3776-3783. PubMed ID: 29336542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple route to (NH4)(x)WO3 nanorods for near infrared absorption.
    Guo C; Yin S; Dong Q; Sato T
    Nanoscale; 2012 Jun; 4(11):3394-8. PubMed ID: 22543744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property.
    Guo C; Yin S; Huang L; Sato T
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2794-9. PubMed ID: 21675747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.
    Zhang T; Zhu Z; Chen H; Bai Y; Xiao S; Zheng X; Xue Q; Yang S
    Nanoscale; 2015 Feb; 7(7):2933-40. PubMed ID: 25587830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and optical properties of nanocrystalline WO₃ thin films studied by optical spectroscopy and density functional calculations.
    Johansson MB; Baldissera G; Valyukh I; Persson C; Arwin H; Niklasson GA; Osterlund L
    J Phys Condens Matter; 2013 May; 25(20):205502. PubMed ID: 23614973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The band structure of WO3 and non-rigid-band behaviour in Na0.67WO3 derived from soft x-ray spectroscopy and density functional theory.
    Chen B; Laverock J; Piper LF; Preston AR; Cho SW; DeMasi A; Smith KE; Scanlon DO; Watson GW; Egdell RG; Glans PA; Guo JH
    J Phys Condens Matter; 2013 Apr; 25(16):165501. PubMed ID: 23553445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pd-Doped WO
    Ponnusamy R; Chakraborty B; Rout CS
    J Phys Chem B; 2018 Mar; 122(10):2737-2746. PubMed ID: 29455530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser.
    Li B; Zhang Y; Zou R; Wang Q; Zhang B; An L; Yin F; Hua Y; Hu J
    Dalton Trans; 2014 Apr; 43(16):6244-50. PubMed ID: 24598863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doping Sodium Tungsten Bronze-Like (Na
    Yang G; Hu D; Xia F; Yang C; Liu Y; He X; Shpotyuk Y; Chen H; Gao Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32206-32217. PubMed ID: 35786831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium-titanate-nanotube-supported WO3 for enhancing transmittance contrast in electrochromics.
    Dong Y; Xiong C; Zhang Y; Xing S; Jiang H
    Nanotechnology; 2016 Mar; 27(10):105704. PubMed ID: 26866352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TiO2(B) nanoparticle-functionalized WO3 nanorods with enhanced gas sensing properties.
    Zhang H; Wang S; Wang Y; Yang J; Gao X; Wang L
    Phys Chem Chem Phys; 2014 Jun; 16(22):10830-6. PubMed ID: 24760175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nd-Nb Co-doped SnO
    Goei R; Ong AJ; Tan JH; Loke JY; Lua SK; Mandler D; Magdassi S; Yoong Tok AI
    ACS Omega; 2021 Oct; 6(40):26251-26261. PubMed ID: 34660984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible core-shell Cs
    Wang Y; Yan Z; Zhang M; Zhang Z; Li T; Chen M; Dong W
    Nanoscale Adv; 2021 Jun; 3(11):3177-3183. PubMed ID: 36133663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array.
    Xu F; Yao Y; Bai D; Xu R; Mei J; Wu D; Gao Z; Jiang K
    J Colloid Interface Sci; 2015 Nov; 458():194-9. PubMed ID: 26218199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopant-controlled morphology evolution of WO3 polyhedra synthesized by RF thermal plasma and their sensing properties.
    Yao M; Li Q; Hou G; Lu C; Cheng B; Wu K; Xu G; Yuan F; Ding F; Chen Y
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2856-66. PubMed ID: 25580563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid density functional study on the visible light photocatalytic activity of (Mo,Cr)-N codoped KNbO₃.
    Wang G; Chen H; Li Y; Kuang A; Yuan H; Wu G
    Phys Chem Chem Phys; 2015 Nov; 17(43):28743-53. PubMed ID: 26447118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional Rbx WO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging.
    Tian G; Zhang X; Zheng X; Yin W; Ruan L; Liu X; Zhou L; Yan L; Li S; Gu Z; Zhao Y
    Small; 2014 Oct; 10(20):4160-70. PubMed ID: 24979184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and properties of a branched (NH₄)xWO₃ nanowire array film and a porous WO3 nanorod array film.
    Liu Y; Zhao L; Su J; Li M; Guo L
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3532-8. PubMed ID: 25623076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The h-Sb
    von Rohr FO; Ryser A; Ji H; Stolze K; Tao J; Frick JJ; Patzke GR; Cava RJ
    Chemistry; 2019 Feb; 25(8):2082-2088. PubMed ID: 30623498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.