These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26783692)

  • 1. Three-dimensional kinematics of competitive and recreational cyclists across different workloads during cycling.
    Bini RR; Dagnese F; Rocha E; Silveira MC; Carpes FP; Mota CB
    Eur J Sport Sci; 2016 Aug; 16(5):553-9. PubMed ID: 26783692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in pedalling technique between road cyclists of different competitive levels.
    García-López J; Díez-Leal S; Ogueta-Alday A; Larrazabal J; Rodríguez-Marroyo JA
    J Sports Sci; 2016 Sep; 34(17):1619-26. PubMed ID: 26703374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclists and triathletes have different body positions on the bicycle.
    Bini RR; Hume PA; Croft J
    Eur J Sport Sci; 2014; 14 Suppl 1():S109-15. PubMed ID: 24444194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower-extremity joint kinematics and muscle activations during semi-reclined cycling at different workloads in healthy individuals.
    Momeni K; Faghri PD; Evans M
    J Neuroeng Rehabil; 2014 Oct; 11():146. PubMed ID: 25325920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of moving forward or backward on the saddle on knee joint forces during cycling.
    Bini RR; Hume PA; Lanferdini FJ; Vaz MA
    Phys Ther Sport; 2013 Feb; 14(1):23-7. PubMed ID: 23312729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of workload and pedalling cadence on knee forces in competitive cyclists.
    Bini RR; Hume PA
    Sports Biomech; 2013 Jun; 12(2):93-107. PubMed ID: 23898683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the effect of changing handgrip position on joint specific power and cycling kinematics in recreational and professional cyclists.
    Skovereng K; Aasvold LO; Ettema G
    PLoS One; 2020; 15(8):e0237768. PubMed ID: 32813742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of body positions on the saddle on pedalling technique for cyclists and triathletes.
    Bini RR; Hume PA; Lanferdini FJ; Vaz MA
    Eur J Sport Sci; 2014; 14 Suppl 1():S413-20. PubMed ID: 24444236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of cadence and power output on the biomechanics of force application during steady-rate cycling in competitive and recreational cyclists.
    Sanderson DJ
    J Sports Sci; 1991; 9(2):191-203. PubMed ID: 1895355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Workloads and Cadences on Frontal Plane Knee Biomechanics in Cycling.
    Fang Y; Fitzhugh EC; Crouter SE; Gardner JK; Zhang S
    Med Sci Sports Exerc; 2016 Feb; 48(2):260-6. PubMed ID: 26317300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling.
    Bertucci W; Grappe F; Girard A; Betik A; Rouillon JD
    J Biomech; 2005 May; 38(5):1003-10. PubMed ID: 15797582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cycling with Low Saddle Height is Related to Increased Knee Adduction Moments in Healthy Recreational Cyclists.
    Wang Y; Liang L; Wang D; Tang Y; Wu X; Li L; Liu Y
    Eur J Sport Sci; 2020 May; 20(4):461-467. PubMed ID: 31269871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes.
    Bini RR; Hume PA; Kilding AE
    Eur J Sport Sci; 2014; 14(1):44-52. PubMed ID: 24533494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-driving intersegmental knee moments in cycling computed using a model that includes three-dimensional kinematics of the shank/foot and the effect of simplifying assumptions.
    Gregersen CS; Hull ML
    J Biomech; 2003 Jun; 36(6):803-13. PubMed ID: 12742448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do differences in muscle recruitment between novice and elite cyclists reflect different movement patterns or less skilled muscle recruitment?
    Chapman A; Vicenzino B; Blanch P; Hodges P
    J Sci Med Sport; 2009 Jan; 12(1):31-4. PubMed ID: 18077215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute effects of small changes in crank length on gross efficiency and pedalling technique during submaximal cycling.
    Ferrer-Roca V; Rivero-Palomo V; Ogueta-Alday A; Rodríguez-Marroyo JA; García-López J
    J Sports Sci; 2017 Jul; 35(14):1328-1335. PubMed ID: 27484153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Road Cycling and Mountain Biking Produces Adaptations on the Spine and Hamstring Extensibility.
    Muyor JM; Zabala M
    Int J Sports Med; 2016 Jan; 37(1):43-9. PubMed ID: 26509372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximal strength and power, muscle mass, endurance and serum hormones in weightlifters and road cyclists.
    Izquierdo M; Ibáñez J; Häkkinen K; Kraemer WJ; Ruesta M; Gorostiaga EM
    J Sports Sci; 2004 May; 22(5):465-78. PubMed ID: 15160600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute effects of small changes in antero-posterior shoe-cleat position on physiological and biomechanical variables in road cycling.
    Chartogne M; Millour G; García-López J; Duc S; Rodríguez-Marroyo JA; Pernía R; Bertucci W
    Sports Biomech; 2023 Apr; 22(4):510-521. PubMed ID: 35129429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of hip orientation on Wingate power output and cycling technique.
    Reiser RF; Peterson ML; Broker JP
    J Strength Cond Res; 2002 Nov; 16(4):556-60. PubMed ID: 12423185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.