These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 26784146)
1. In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes. Sun Y; Lee HW; Zheng G; Seh ZW; Sun J; Li Y; Cui Y Nano Lett; 2016 Feb; 16(2):1497-501. PubMed ID: 26784146 [TBL] [Abstract][Full Text] [Related]
2. Metal/LiF/Li Du J; Wang W; Sheng Eng AY; Liu X; Wan M; Seh ZW; Sun Y Nano Lett; 2020 Jan; 20(1):546-552. PubMed ID: 31775001 [TBL] [Abstract][Full Text] [Related]
3. Li Pan Y; Qi X; Du H; Ji Y; Yang D; Zhu Z; Yang Y; Qie L; Huang Y ACS Appl Mater Interfaces; 2023 Apr; 15(15):18763-18770. PubMed ID: 37036946 [TBL] [Abstract][Full Text] [Related]
4. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries. Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090 [TBL] [Abstract][Full Text] [Related]
5. High-Energy-Density and Long-Lifetime Lithium-Ion Battery Enabled by a Stabilized Li Zheng L; Yu A; Li G; Zhang J ACS Appl Mater Interfaces; 2022 Aug; 14(34):38706-38716. PubMed ID: 35993675 [TBL] [Abstract][Full Text] [Related]
6. A Prelithiation Separator for Compensating the Initial Capacity Loss of Lithium-Ion Batteries. Rao Z; Wu J; He B; Chen W; Wang H; Fu Q; Huang Y ACS Appl Mater Interfaces; 2021 Aug; 13(32):38194-38201. PubMed ID: 34342445 [TBL] [Abstract][Full Text] [Related]
7. Electrocatalytic Decomposition of Lithium Oxalate-Based Composite Microspheres as a Prelithiation Additive in Lithium-Ion Batteries. Liu J; Lin J; Yin Z; Tong Z; Liu J; Wang Z; Zhou Y; Li J Molecules; 2024 Jun; 29(13):. PubMed ID: 38998928 [TBL] [Abstract][Full Text] [Related]
8. Conformal Prelithiation Nanoshell on LiCoO Liu X; Tan Y; Wang W; Li C; Seh ZW; Wang L; Sun Y Nano Lett; 2020 Jun; 20(6):4558-4565. PubMed ID: 32374615 [TBL] [Abstract][Full Text] [Related]
9. Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries. Fan X; Zhu Y; Luo C; Suo L; Lin Y; Gao T; Xu K; Wang C ACS Nano; 2016 May; 10(5):5567-77. PubMed ID: 27163232 [TBL] [Abstract][Full Text] [Related]
10. Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries. Zhao J; Lu Z; Wang H; Liu W; Lee HW; Yan K; Zhuo D; Lin D; Liu N; Cui Y J Am Chem Soc; 2015 Jul; 137(26):8372-5. PubMed ID: 26091423 [TBL] [Abstract][Full Text] [Related]
11. Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries. Zhang X; Qu H; Ji W; Zheng D; Ding T; Abegglen C; Qiu D; Qu D ACS Appl Mater Interfaces; 2020 Mar; 12(10):11589-11599. PubMed ID: 32056422 [TBL] [Abstract][Full Text] [Related]
12. Impact of Electrolyte on Direct-Contact Prelithiation of Silicon-Graphite Anodes in Lithium-Ion Cells with High-Nickel Cathodes. Yi M; Cui Z; Manthiram A ACS Appl Mater Interfaces; 2024 Aug; 16(32):42270-42282. PubMed ID: 39099288 [TBL] [Abstract][Full Text] [Related]
13. Implanting Transition Metal into Li Chen Y; Zhu Y; Zuo W; Kuai X; Yao J; Zhang B; Sun Z; Yin J; Wu X; Zhang H; Yan Y; Huang H; Zheng L; Xu J; Yin W; Qiu Y; Zhang Q; Hwang I; Sun CJ; Amine K; Xu GL; Qiao Y; Sun SG Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202316112. PubMed ID: 38088222 [TBL] [Abstract][Full Text] [Related]
14. Conductive Polymer Binder-Enabled SiO-SnxCoyCz Anode for High-Energy Lithium-Ion Batteries. Zhao H; Fu Y; Ling M; Jia Z; Song X; Chen Z; Lu J; Amine K; Liu G ACS Appl Mater Interfaces; 2016 Jun; 8(21):13373-7. PubMed ID: 27160017 [TBL] [Abstract][Full Text] [Related]
15. Prelithiation Bridges the Gap for Developing Next-Generation Lithium-Ion Batteries/Capacitors. Li F; Cao Y; Wu W; Wang G; Qu D Small Methods; 2022 Jul; 6(7):e2200411. PubMed ID: 35680608 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of LiF/Fe/Graphene nanocomposites as cathode material for lithium-ion batteries. Ma R; Dong Y; Xi L; Yang S; Lu Z; Chung C ACS Appl Mater Interfaces; 2013 Feb; 5(3):892-7. PubMed ID: 23298407 [TBL] [Abstract][Full Text] [Related]
17. Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery. Wang F; Wang B; Li J; Wang B; Zhou Y; Wang D; Liu H; Dou S ACS Nano; 2021 Feb; 15(2):2197-2218. PubMed ID: 33570903 [TBL] [Abstract][Full Text] [Related]
18. Understanding of the Mechanism Enables Controllable Chemical Prelithiation of Anode Materials for Lithium-Ion Batteries. Yue H; Zhang S; Feng T; Chen C; Zhou H; Xu Z; Wu M ACS Appl Mater Interfaces; 2021 Nov; 13(45):53996-54004. PubMed ID: 34732046 [TBL] [Abstract][Full Text] [Related]
19. Yang Y; Wang J; Kim SC; Zhang W; Peng Y; Zhang P; Vilá RA; Ma Y; Jeong YK; Cui Y Nano Lett; 2023 Jun; 23(11):5042-5047. PubMed ID: 37236151 [TBL] [Abstract][Full Text] [Related]
20. A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance. Liu Y; Yang B; Dong X; Wang Y; Xia Y Angew Chem Int Ed Engl; 2017 Dec; 56(52):16606-16610. PubMed ID: 29135065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]