These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26784439)

  • 1. Interwall Friction and Sliding Behavior of Centimeters Long Double-Walled Carbon Nanotubes.
    Zhang R; Ning Z; Xu Z; Zhang Y; Xie H; Ding F; Chen Q; Zhang Q; Qian W; Cui Y; Wei F
    Nano Lett; 2016 Feb; 16(2):1367-74. PubMed ID: 26784439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties and buckling behaviors of condensed double-walled carbon nanotubes.
    Zhang Y; Wang CM; Tan VB
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4870-9. PubMed ID: 19928163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes.
    Soto M; Boyer TA; Biradar S; Ge L; Vajtai R; Elías-Zúñiga A; Ajayan PM; Barrera EV
    Nanotechnology; 2015 Apr; 26(16):165201. PubMed ID: 25816374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube conditioning part 1-effect of interwall interaction on the electronic band gap of double-walled carbon nanotubes.
    Soto M; Vajtai R; Ajayan PM; Barrera EV
    Nanotechnology; 2018 Jan; 29(4):045701. PubMed ID: 29199975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions.
    Zhang R; Ning Z; Zhang Y; Zheng Q; Chen Q; Xie H; Zhang Q; Qian W; Wei F
    Nat Nanotechnol; 2013 Dec; 8(12):912-6. PubMed ID: 24185944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal effect on DWCNTs as rotational bearings.
    Zhu BE; Pan ZY; Wang YX; Xiao Y
    Nanotechnology; 2008 Dec; 19(49):495708. PubMed ID: 21730688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Friction and Wear Behavior of Double-Walled Carbon Nanotube-Yttria-Stabilized ZrO
    Kasperski A; Alkattan D; Turq V; Estournès C; Laurent C; Weibel A
    Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of strain engineering on superlubricity in a double-walled carbon nanotube.
    Li J; Peng Y; Tang X; Xu Q; Bai L
    Phys Chem Chem Phys; 2021 Mar; 23(8):4988-5000. PubMed ID: 33621296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curvature-induced metallization of double-walled semiconducting zigzag carbon nanotubes.
    Okada S; Oshiyama A
    Phys Rev Lett; 2003 Nov; 91(21):216801. PubMed ID: 14683326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoluminescence spectrum using DFT for double-walled carbon nanotubes with metallic constituents.
    Victoria APR; de la Luz ADH; Juárez JM; Espinosa-Torres ND; Robles-Águila MJ; López JAL; Juárez-Díaz G
    J Mol Model; 2019 Aug; 25(9):273. PubMed ID: 31451950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction.
    Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L
    Nano Lett; 2010 Oct; 10(10):4067-73. PubMed ID: 20845964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intermediate frequency modes of single- and double-walled carbon nanotubes: a Raman spectroscopic and in situ Raman spectroelectrochemical study.
    Kalbac M; Kavan L; Zukalová M; Dunsch L
    Chemistry; 2006 May; 12(16):4451-7. PubMed ID: 16552794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy dissipation of high-speed nanobearings from double-walled carbon nanotubes.
    Zhu C; Guo W; Yu T
    Nanotechnology; 2008 Nov; 19(46):465703. PubMed ID: 21836258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study.
    Koyama T; Miyata Y; Asaka K; Shinohara H; Saito Y; Nakamura A
    Phys Chem Chem Phys; 2012 Jan; 14(3):1070-84. PubMed ID: 22127395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When double-wall carbon nanotubes can become metallic or semiconducting.
    Moradian R; Azadi S; Refii-Tabar H
    J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smallest Archimedean Screw: Facet Dynamics and Friction in Multiwalled Nanotubes.
    Guerra R; Leven I; Vanossi A; Hod O; Tosatti E
    Nano Lett; 2017 Sep; 17(9):5321-5328. PubMed ID: 28795813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-wall carbon nanotube-porphyrin supramolecular hybrid: synthesis and photophysical studies.
    Vizuete M; Gómez-Escalonilla MJ; Fierro JL; Atienzar P; García H; Langa F
    Chemphyschem; 2014 Jan; 15(1):100-8. PubMed ID: 24265140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective and Scalable Chemical Removal of Thin Single-Walled Carbon Nanotubes from their Mixtures with Double-Walled Carbon Nanotubes.
    Komínková Z; Valeš V; Kalbáč M
    Chemistry; 2015 Nov; 21(45):16147-53. PubMed ID: 26358882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction of Linear Carbon Chains Unravels the Role of the Carbon Nanotube Host.
    Shi L; Yanagi K; Cao K; Kaiser U; Ayala P; Pichler T
    ACS Nano; 2018 Aug; 12(8):8477-8484. PubMed ID: 30085656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ Raman spectroelectrochemical study of 13C-labeled fullerene peapods and carbon nanotubes.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Small; 2007 Oct; 3(10):1746-52. PubMed ID: 17853497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.