BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26784446)

  • 1. Spontaneous Detachment of Colloids from Primary Energy Minima by Brownian Diffusion.
    Wang Z; Jin Y; Shen C; Li T; Huang Y; Li B
    PLoS One; 2016; 11(1):e0147368. PubMed ID: 26784446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations.
    Wang Z; Wang D; Li B; Wang J; Li T; Zhang M; Huang Y; Shen C
    Environ Pollut; 2016 Jun; 213():698-709. PubMed ID: 27023279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces.
    Shen C; Wang F; Li B; Jin Y; Wang LP; Huang Y
    Langmuir; 2012 Oct; 28(41):14681-92. PubMed ID: 23006065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled factors influencing detachment of nano- and micro-sized particles from primary minima.
    Shen C; Lazouskaya V; Jin Y; Li B; Ma Z; Zheng W; Huang Y
    J Contam Hydrol; 2012 Jun; 134-135():1-11. PubMed ID: 22575872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aquasols: on the role of secondary minima.
    Hahn MW; Abadzic D; O'Melia CR
    Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloid retention in porous media: mechanistic confirmation of wedging and retention in zones of flow stagnation.
    Johnson WP; Li X; Yal G
    Environ Sci Technol; 2007 Feb; 41(4):1279-87. PubMed ID: 17593731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of coupled primary- and secondary-minimum deposition of colloids under unfavorable chemical conditions.
    Shen C; Li B; Huang Y; Jin Y
    Environ Sci Technol; 2007 Oct; 41(20):6976-82. PubMed ID: 17993137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of surface heterogeneities on reversibility of fullerene (nC60) nanoparticle attachment in saturated porous media.
    Shen C; Zhang M; Zhang S; Wang Z; Zhang H; Li B; Huang Y
    J Hazard Mater; 2015 Jun; 290():60-8. PubMed ID: 25746565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media.
    Bradford SA; Torkzaban S; Walker SL
    Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteroaggregation of microparticles with nanoparticles changes the chemical reversibility of the microparticles' attachment to planar surfaces.
    Shen C; Wu L; Zhang S; Ye H; Li B; Huang Y
    J Colloid Interface Sci; 2014 May; 421():103-13. PubMed ID: 24594038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An explanation for differences in the process of colloid adsorption in batch and column studies.
    Treumann S; Torkzaban S; Bradford SA; Visalakshan RM; Page D
    J Contam Hydrol; 2014 Aug; 164():219-29. PubMed ID: 24997430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between nanoparticles and fractal surfaces.
    Wang H; Zhang W; Zeng S; Shen C; Jin C; Huang Y
    Water Res; 2019 Mar; 151():296-309. PubMed ID: 30616042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical role of surface roughness on colloid retention and release in porous media.
    Torkzaban S; Bradford SA
    Water Res; 2016 Jan; 88():274-284. PubMed ID: 26512805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.
    Haque ME; Shen C; Li T; Chu H; Wang H; Li Z; Huang Y
    J Environ Qual; 2017 Nov; 46(6):1480-1488. PubMed ID: 29293838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.
    Shen C; Wang H; Lazouskaya V; Du Y; Lu W; Wu J; Zhang H; Huang Y
    J Contam Hydrol; 2015; 177-178():18-29. PubMed ID: 25805364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions.
    Tufenkji N; Elimelech M
    Langmuir; 2004 Dec; 20(25):10818-28. PubMed ID: 15568829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention and transport of amphiphilic colloids under unsaturated flow conditions: effect of particle size and surface property.
    Zhuang J; Qi J; Jin Y
    Environ Sci Technol; 2005 Oct; 39(20):7853-9. PubMed ID: 16295847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry.
    Zhao W; Walker SL; Huang Q; Cai P
    Water Res; 2014 Apr; 53():35-46. PubMed ID: 24495985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitated attachment of nanoparticles at primary minima by nanoscale roughness is susceptible to hydrodynamic drag under unfavorable chemical conditions.
    Shen C; Jin Y; Li B; Zheng W; Huang Y
    Sci Total Environ; 2014 Jan; 466-467():1094-102. PubMed ID: 24013017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.