These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26784446)

  • 21. Important Role of Concave Surfaces in Deposition of Colloids under Favorable Conditions as Revealed by Microscale Visualization.
    Li T; Shen C; Johnson WP; Ma H; Jin C; Zhang C; Chu X; Ma K; Xing B
    Environ Sci Technol; 2022 Apr; 56(7):4121-4131. PubMed ID: 35312300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detachment of colloids from a solid surface by a moving air-water interface.
    Sharma P; Flury M; Zhou J
    J Colloid Interface Sci; 2008 Oct; 326(1):143-50. PubMed ID: 18684467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Colloid transport in dolomite rock fractures: effects of fracture characteristics, specific discharge, and ionic strength.
    Mondal PK; Sleep BE
    Environ Sci Technol; 2012 Sep; 46(18):9987-94. PubMed ID: 22891695
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amino acid induced fractal aggregation of gold nanoparticles: Why and how.
    Doyen M; Goole J; Bartik K; Bruylants G
    J Colloid Interface Sci; 2016 Feb; 464():160-6. PubMed ID: 26613335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergies of surface roughness and hydration on colloid detachment in saturated porous media: Column and atomic force microscopy studies.
    Li T; Shen C; Wu S; Jin C; Bradford SA
    Water Res; 2020 Sep; 183():116068. PubMed ID: 32619803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A
    J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Site-specific retention of colloids at rough rock surfaces.
    Darbha GK; Fischer C; Luetzenkirchen J; Schäfer T
    Environ Sci Technol; 2012 Sep; 46(17):9378-87. PubMed ID: 22861645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications.
    Hahn MW; O'Meliae CR
    Environ Sci Technol; 2004 Jan; 38(1):210-20. PubMed ID: 14740738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Observed equilibrium partition and second-order kinetic interaction of quantum dot nanoparticles in saturated porous media.
    Shen C; Haque ME; Wang D; Zheng W; Yin Y; Huang Y
    J Contam Hydrol; 2021 Jun; 240():103799. PubMed ID: 33799018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of particle shape on colloid retention and release in saturated porous media.
    Liu Q; Lazouskaya V; He Q; Jin Y
    J Environ Qual; 2010; 39(2):500-8. PubMed ID: 20176823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does colloid shape affect detachment of colloids by a moving air-water interface?
    Aramrak S; Flury M; Harsh JB; Zollars RL; Davis HP
    Langmuir; 2013 May; 29(19):5770-80. PubMed ID: 23586925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DLVO Interaction Energies between Hollow Spherical Particles and Collector Surfaces.
    Shen C; Bradford S; Wang Z; Huang Y; Zhang Y; Li B
    Langmuir; 2017 Oct; 33(40):10455-10467. PubMed ID: 28925268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities.
    Tufenkji N; Elimelech M
    Langmuir; 2005 Feb; 21(3):841-52. PubMed ID: 15667159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Colloid mobilization by fluid displacement fronts in channels.
    Lazouskaya V; Wang LP; Or D; Wang G; Caplan JL; Jin Y
    J Colloid Interface Sci; 2013 Sep; 406():44-50. PubMed ID: 23800372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Causes and implications of colloid and microorganism retention hysteresis.
    Bradford SA; Kim H
    J Contam Hydrol; 2012 Sep; 138-139():83-92. PubMed ID: 22820488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Colloid population heterogeneity drives hyperexponential deviation from classic filtration theory.
    Tong M; Johnson WP
    Environ Sci Technol; 2007 Jan; 41(2):493-9. PubMed ID: 17310712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lip balm drying promotes virus attachment: Characterization of lip balm coatings and XDLVO modeling.
    Wang X; Şengür-Taşdemir R; Koyuncu İ; Tarabara VV
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):884-894. PubMed ID: 32877879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Release of colloids from primary minimum contact under unfavorable conditions by perturbations in ionic strength and flow rate.
    Pazmino E; Trauscht J; Johnson WP
    Environ Sci Technol; 2014 Aug; 48(16):9227-35. PubMed ID: 25020030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An agglomeration-based model for colloid filtration.
    Chatterjee J; Gupta SK
    Environ Sci Technol; 2009 May; 43(10):3694-9. PubMed ID: 19544875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Observed Dependence of Colloid Detachment on the Concentration of Initially Attached Colloids and Collector Surface Heterogeneity in Porous Media.
    Li T; Jin Y; Huang Y; Li B; Shen C
    Environ Sci Technol; 2017 Mar; 51(5):2811-2820. PubMed ID: 28190337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.