These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26784449)

  • 1. In Vitro Comparison of the Activity Requirements and Substrate Specificity of Human and Triboleum castaneum PINK1 Orthologues.
    Aerts L; Craessaerts K; De Strooper B; Morais VA
    PLoS One; 2016; 11(1):e0146083. PubMed ID: 26784449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations.
    Woodroof HI; Pogson JH; Begley M; Cantley LC; Deak M; Campbell DG; van Aalten DM; Whitworth AJ; Alessi DR; Muqit MM
    Open Biol; 2011 Nov; 1(3):110012. PubMed ID: 22645651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-terminal truncation and Parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1.
    Sim CH; Lio DS; Mok SS; Masters CL; Hill AF; Culvenor JG; Cheng HC
    Hum Mol Genet; 2006 Nov; 15(21):3251-62. PubMed ID: 17000703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PINK1 autophosphorylation is required for ubiquitin recognition.
    Rasool S; Soya N; Truong L; Croteau N; Lukacs GL; Trempe JF
    EMBO Rep; 2018 Apr; 19(4):. PubMed ID: 29475881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1).
    Mills RD; Sim CH; Mok SS; Mulhern TD; Culvenor JG; Cheng HC
    J Neurochem; 2008 Apr; 105(1):18-33. PubMed ID: 18221368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex.
    Rasool S; Veyron S; Soya N; Eldeeb MA; Lukacs GL; Fon EA; Trempe JF
    Mol Cell; 2022 Jan; 82(1):44-59.e6. PubMed ID: 34875213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into ubiquitin phosphorylation by PINK1.
    Okatsu K; Sato Y; Yamano K; Matsuda N; Negishi L; Takahashi A; Yamagata A; Goto-Ito S; Mishima M; Ito Y; Oka T; Tanaka K; Fukai S
    Sci Rep; 2018 Jul; 8(1):10382. PubMed ID: 29991771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease.
    Dodson MW; Guo M
    Curr Opin Neurobiol; 2007 Jun; 17(3):331-7. PubMed ID: 17499497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy.
    Ordureau A; Heo JM; Duda DM; Paulo JA; Olszewski JL; Yanishevski D; Rinehart J; Schulman BA; Harper JW
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6637-42. PubMed ID: 25969509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria.
    Koyano F; Matsuda N
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt B):2791-6. PubMed ID: 25700839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of PINK1 and mechanisms of Parkinson's disease-associated mutations.
    Kumar A; Tamjar J; Waddell AD; Woodroof HI; Raimi OG; Shaw AM; Peggie M; Muqit MM; van Aalten DM
    Elife; 2017 Oct; 6():. PubMed ID: 28980524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a common biological pathway linking three Parkinson's disease-causing genes: parkin, PINK1 and DJ-1.
    van der Merwe C; Jalali Sefid Dashti Z; Christoffels A; Loos B; Bardien S
    Eur J Neurosci; 2015 May; 41(9):1113-25. PubMed ID: 25761903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin.
    Caulfield TR; Fiesel FC; Moussaud-Lamodière EL; Dourado DF; Flores SC; Springer W
    PLoS Comput Biol; 2014 Nov; 10(11):e1003935. PubMed ID: 25375667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1.
    Weihofen A; Ostaszewski B; Minami Y; Selkoe DJ
    Hum Mol Genet; 2008 Feb; 17(4):602-16. PubMed ID: 18003639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy.
    Nguyen TN; Padman BS; Lazarou M
    Trends Cell Biol; 2016 Oct; 26(10):733-744. PubMed ID: 27291334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.
    Durcan TM; Fon EA
    Genes Dev; 2015 May; 29(10):989-99. PubMed ID: 25995186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parkin stabilizes PINK1 through direct interaction.
    Shiba K; Arai T; Sato S; Kubo S; Ohba Y; Mizuno Y; Hattori N
    Biochem Biophys Res Commun; 2009 Jun; 383(3):331-5. PubMed ID: 19358826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular interaction between parkin and PINK1 in mammalian neuronal cells.
    Um JW; Stichel-Gunkel C; Lübbert H; Lee G; Chung KC
    Mol Cell Neurosci; 2009 Apr; 40(4):421-32. PubMed ID: 19167501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation.
    Kim Y; Park J; Kim S; Song S; Kwon SK; Lee SH; Kitada T; Kim JM; Chung J
    Biochem Biophys Res Commun; 2008 Dec; 377(3):975-80. PubMed ID: 18957282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkin and PINK1 functions in oxidative stress and neurodegeneration.
    Barodia SK; Creed RB; Goldberg MS
    Brain Res Bull; 2017 Jul; 133():51-59. PubMed ID: 28017782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.