These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26784449)

  • 21. Molecular interaction between parkin and PINK1 in mammalian neuronal cells.
    Um JW; Stichel-Gunkel C; Lübbert H; Lee G; Chung KC
    Mol Cell Neurosci; 2009 Apr; 40(4):421-32. PubMed ID: 19167501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation.
    Kim Y; Park J; Kim S; Song S; Kwon SK; Lee SH; Kitada T; Kim JM; Chung J
    Biochem Biophys Res Commun; 2008 Dec; 377(3):975-80. PubMed ID: 18957282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parkin and PINK1 functions in oxidative stress and neurodegeneration.
    Barodia SK; Creed RB; Goldberg MS
    Brain Res Bull; 2017 Jul; 133():51-59. PubMed ID: 28017782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of parkin aggregates and enhanced PINK1 accumulation during the pathogenesis of Parkinson's disease.
    Um JW; Park HJ; Song J; Jeon I; Lee G; Lee PH; Chung KC
    Biochem Biophys Res Commun; 2010 Mar; 393(4):824-8. PubMed ID: 20171192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease.
    Shi G; Lee JR; Grimes DA; Racacho L; Ye D; Yang H; Ross OA; Farrer M; McQuibban GA; Bulman DE
    Hum Mol Genet; 2011 May; 20(10):1966-74. PubMed ID: 21355049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease.
    Shiba-Fukushima K; Ishikawa KI; Inoshita T; Izawa N; Takanashi M; Sato S; Onodera O; Akamatsu W; Okano H; Imai Y; Hattori N
    Hum Mol Genet; 2017 Aug; 26(16):3172-3185. PubMed ID: 28541509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunocytochemical Monitoring of PINK1/Parkin-Mediated Mitophagy in Cultured Cells.
    Fujimaki M; Saiki S; Sasazawa Y; Ishikawa KI; Imamichi Y; Sumiyoshi K; Hattori N
    Methods Mol Biol; 2018; 1759():19-27. PubMed ID: 28361483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial quality control by the Pink1/Parkin system.
    Rüb C; Wilkening A; Voos W
    Cell Tissue Res; 2017 Jan; 367(1):111-123. PubMed ID: 27586587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa.
    Ibáñez P; Lesage S; Lohmann E; Thobois S; De Michele G; Borg M; Agid Y; Dürr A; Brice A;
    Brain; 2006 Mar; 129(Pt 3):686-94. PubMed ID: 16401616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment.
    Okatsu K; Kimura M; Oka T; Tanaka K; Matsuda N
    J Cell Sci; 2015 Mar; 128(5):964-78. PubMed ID: 25609704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. S-Nitrosylation of PINK1 Attenuates PINK1/Parkin-Dependent Mitophagy in hiPSC-Based Parkinson's Disease Models.
    Oh CK; Sultan A; Platzer J; Dolatabadi N; Soldner F; McClatchy DB; Diedrich JK; Yates JR; Ambasudhan R; Nakamura T; Jaenisch R; Lipton SA
    Cell Rep; 2017 Nov; 21(8):2171-2182. PubMed ID: 29166608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitophagy: the latest problem for Parkinson's disease.
    Vives-Bauza C; Przedborski S
    Trends Mol Med; 2011 Mar; 17(3):158-65. PubMed ID: 21146459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-content functional genomic screening to identify novel regulators of the PINK1-Parkin pathway.
    Ng AC; Baird SD; Screaton RA
    Methods Enzymol; 2014; 547():1-20. PubMed ID: 25416349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hexokinases link DJ-1 to the PINK1/parkin pathway.
    Hauser DN; Mamais A; Conti MM; Primiani CT; Kumaran R; Dillman AA; Langston RG; Beilina A; Garcia JH; Diaz-Ruiz A; Bernier M; Fiesel FC; Hou X; Springer W; Li Y; de Cabo R; Cookson MR
    Mol Neurodegener; 2017 Sep; 12(1):70. PubMed ID: 28962651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylated ubiquitin chain is the genuine Parkin receptor.
    Okatsu K; Koyano F; Kimura M; Kosako H; Saeki Y; Tanaka K; Matsuda N
    J Cell Biol; 2015 Apr; 209(1):111-28. PubMed ID: 25847540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance.
    Buhlman L; Damiano M; Bertolin G; Ferrando-Miguel R; Lombès A; Brice A; Corti O
    Biochim Biophys Acta; 2014 Sep; 1843(9):2012-26. PubMed ID: 24878071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation.
    Aguirre JD; Dunkerley KM; Mercier P; Shaw GS
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):298-303. PubMed ID: 28007983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease.
    Koentjoro B; Park JS; Sue CM
    Sci Rep; 2017 Mar; 7():44373. PubMed ID: 28281653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control.
    Zhuang N; Li L; Chen S; Wang T
    Cell Death Dis; 2016 Dec; 7(12):e2501. PubMed ID: 27906179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PINK1 gene knockdown leads to increased binding of parkin with actin filament.
    Kim KH; Son JH
    Neurosci Lett; 2010 Jan; 468(3):272-6. PubMed ID: 19909785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.