These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Thermochemical and kinetic analysis on the reactions of O2 with products from OH addition to isobutene, 2-hydroxy-1,1-dimethylethyl, and 2-hydroxy-2-methylpropyl radicals: HO2 formation from oxidation of neopentane, Part II. Sun H; Bozzelli JW; Law CK J Phys Chem A; 2007 Jun; 111(23):4974-86. PubMed ID: 17511431 [TBL] [Abstract][Full Text] [Related]
9. Thermochemistry of Hydroxyl and Hydroperoxide Substituted Furan, Methylfuran, and Methoxyfuran. Hudzik JM; Bozzelli JW J Phys Chem A; 2017 Jun; 121(23):4523-4544. PubMed ID: 28459571 [TBL] [Abstract][Full Text] [Related]
10. Thermochemistry, bond energies, and internal rotor potentials of dimethyl tetraoxide. da Silva G; Bozzelli JW J Phys Chem A; 2007 Nov; 111(47):12026-36. PubMed ID: 17983209 [TBL] [Abstract][Full Text] [Related]
11. Structure and thermochemical properties of 2-methoxyfuran, 3-methoxyfuran, and their carbon-centered radicals using computational chemistry. Hudzik JM; Bozzelli JW J Phys Chem A; 2010 Aug; 114(30):7984-95. PubMed ID: 20666545 [TBL] [Abstract][Full Text] [Related]
12. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide. Asatryan R; Bozzelli JW Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic properties (enthalpy, bond energy, entropy, and heat capacity) and internal rotor potentials of vinyl alcohol, methyl vinyl ether, and their corresponding radicals. da Silva G; Kim CH; Bozzelli JW J Phys Chem A; 2006 Jun; 110(25):7925-34. PubMed ID: 16789782 [TBL] [Abstract][Full Text] [Related]
14. Thermochemical and kinetic analysis of the thermal decomposition of monomethylhydrazine: an elementary reaction mechanism. Sun H; Law CK J Phys Chem A; 2007 May; 111(19):3748-60. PubMed ID: 17388291 [TBL] [Abstract][Full Text] [Related]
15. Structures, internal rotor potentials, and thermochemical properties for a series of nitrocarbonyls, nitroolefins, corresponding nitrites, and their carbon centered radicals. Snitsiriwat S; Asatryan R; Bozzelli JW J Phys Chem A; 2011 Dec; 115(47):13921-30. PubMed ID: 22010966 [TBL] [Abstract][Full Text] [Related]
16. Chain branching and termination in the low-temperature combustion of n-alkanes: 2-pentyl radical + O2, isomerization and association of the second O2. Asatryan R; Bozzelli JW J Phys Chem A; 2010 Jul; 114(29):7693-708. PubMed ID: 20604539 [TBL] [Abstract][Full Text] [Related]
17. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction. da Silva G; Chen CC; Bozzelli JW J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501 [TBL] [Abstract][Full Text] [Related]
18. Thermochemistry and bond dissociation energies of ketones. Hudzik JM; Bozzelli JW J Phys Chem A; 2012 Jun; 116(23):5707-22. PubMed ID: 22668341 [TBL] [Abstract][Full Text] [Related]
19. Thermochemistry of C7H16 to C10H22 alkane isomers: primary, secondary, and tertiary C-H bond dissociation energies and effects of branching. Hudzik JM; Bozzelli JW; Simmie JM J Phys Chem A; 2014 Oct; 118(40):9364-79. PubMed ID: 25180943 [TBL] [Abstract][Full Text] [Related]
20. Reaction Paths and Chemical Activation Reactions of 2-Methyl-5-Furanyl Radical with Hudzik JM; Bozzelli JW J Phys Chem A; 2017 Oct; 121(39):7309-7323. PubMed ID: 28862457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]