BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 26784941)

  • 1. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.
    Cashman TJ; Josowitz R; Johnson BV; Gelb BD; Costa KD
    PLoS One; 2016; 11(1):e0146697. PubMed ID: 26784941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes.
    Josowitz R; Mulero-Navarro S; Rodriguez NA; Falce C; Cohen N; Ullian EM; Weiss LA; Rauen KA; Sobie EA; Gelb BD
    Stem Cell Reports; 2016 Sep; 7(3):355-369. PubMed ID: 27569062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adult human cardiac stem cell supplementation effectively increases contractile function and maturation in human engineered cardiac tissues.
    Murphy JF; Mayourian J; Stillitano F; Munawar S; Broughton KM; Agullo-Pascual E; Sussman MA; Hajjar RJ; Costa KD; Turnbull IC
    Stem Cell Res Ther; 2019 Dec; 10(1):373. PubMed ID: 31801634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients.
    Wu H; Yang H; Rhee JW; Zhang JZ; Lam CK; Sallam K; Chang ACY; Ma N; Lee J; Zhang H; Blau HM; Bers DM; Wu JC
    Eur Heart J; 2019 Dec; 40(45):3685-3695. PubMed ID: 31219556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiomyopathy phenotypes in human-induced pluripotent stem cell-derived cardiomyocytes-a systematic review.
    Eschenhagen T; Carrier L
    Pflugers Arch; 2019 May; 471(5):755-768. PubMed ID: 30324321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible Pluripotent Stem Cell-Derived Cardiomyocytes Reveal Aberrant Extracellular Regulated Kinase 5 and Mitogen-Activated Protein Kinase Kinase 1/2 Signaling Concomitantly Promote Hypertrophic Cardiomyopathy in RAF1-Associated Noonan Syndrome.
    Jaffré F; Miller CL; Schänzer A; Evans T; Roberts AE; Hahn A; Kontaridis MI
    Circulation; 2019 Jul; 140(3):207-224. PubMed ID: 31163979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational investigation of electrophysiology in hypertrophic cardiomyopathy.
    Flenner F; Jungen C; Küpker N; Ibel A; Kruse M; Koivumäki JT; Rinas A; Zech ATL; Rhoden A; Wijnker PJM; Lemoine MD; Steenpass A; Girdauskas E; Eschenhagen T; Meyer C; van der Velden J; Patten-Hamel M; Christ T; Carrier L
    J Mol Cell Cardiol; 2021 Aug; 157():77-89. PubMed ID: 33957110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics.
    Bhagwan JR; Mosqueira D; Chairez-Cantu K; Mannhardt I; Bodbin SE; Bakar M; Smith JGW; Denning C
    J Mol Cell Cardiol; 2020 Aug; 145():43-53. PubMed ID: 32531470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced Pluripotent Stem Cell-Derived Cardiomyocytes from a Patient with MYL2-R58Q-Mediated Apical Hypertrophic Cardiomyopathy Show Hypertrophy, Myofibrillar Disarray, and Calcium Perturbations.
    Zhou W; Bos JM; Ye D; Tester DJ; Hrstka S; Maleszewski JJ; Ommen SR; Nishimura RA; Schaff HV; Kim CS; Ackerman MJ
    J Cardiovasc Transl Res; 2019 Oct; 12(5):394-403. PubMed ID: 30796699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac Tissue Engineering Models of Inherited and Acquired Cardiomyopathies.
    Turnbull IC; Mayourian J; Murphy JF; Stillitano F; Ceholski DK; Costa KD
    Methods Mol Biol; 2018; 1816():145-159. PubMed ID: 29987817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes.
    Tanaka A; Yuasa S; Mearini G; Egashira T; Seki T; Kodaira M; Kusumoto D; Kuroda Y; Okata S; Suzuki T; Inohara T; Arimura T; Makino S; Kimura K; Kimura A; Furukawa T; Carrier L; Node K; Fukuda K
    J Am Heart Assoc; 2014 Nov; 3(6):e001263. PubMed ID: 25389285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypertrophic cardiomyopathy dysfunction mimicked in human engineered heart tissue and improved by sodium-glucose cotransporter 2 inhibitors.
    Wijnker PJM; Dinani R; van der Laan NC; Algül S; Knollmann BC; Verkerk AO; Remme CA; Zuurbier CJ; Kuster DWD; van der Velden J
    Cardiovasc Res; 2024 Mar; 120(3):301-317. PubMed ID: 38240646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy.
    Riaz M; Park J; Sewanan LR; Ren Y; Schwan J; Das SK; Pomianowski PT; Huang Y; Ellis MW; Luo J; Liu J; Song L; Chen IP; Qiu C; Yazawa M; Tellides G; Hwa J; Young LH; Yang L; Marboe CC; Jacoby DL; Campbell SG; Qyang Y
    Circulation; 2022 Apr; 145(16):1238-1253. PubMed ID: 35384713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiomyocyte Apoptosis Is Associated with Contractile Dysfunction in Stem Cell Model of
    Loiben AM; Chien WM; Friedman CE; Chao LS; Weber G; Goldstein A; Sniadecki NJ; Murry CE; Yang KC
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deficient cMyBP-C protein expression during cardiomyocyte differentiation underlies human hypertrophic cardiomyopathy cellular phenotypes in disease specific human ES cell derived cardiomyocytes.
    Monteiro da Rocha A; Guerrero-Serna G; Helms A; Luzod C; Mironov S; Russell M; Jalife J; Day SM; Smith GD; Herron TJ
    J Mol Cell Cardiol; 2016 Oct; 99():197-206. PubMed ID: 27620334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophages enhance contractile force in iPSC-derived human engineered cardiac tissue.
    Lock RI; Graney PL; Tavakol DN; Nash TR; Kim Y; Sanchez E; Morsink M; Ning D; Chen C; Fleischer S; Baldassarri I; Vunjak-Novakovic G
    Cell Rep; 2024 Jun; 43(6):114302. PubMed ID: 38824644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications.
    Goldfracht I; Efraim Y; Shinnawi R; Kovalev E; Huber I; Gepstein A; Arbel G; Shaheen N; Tiburcy M; Zimmermann WH; Machluf M; Gepstein L
    Acta Biomater; 2019 Jul; 92():145-159. PubMed ID: 31075518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling human protein aggregation cardiomyopathy using murine induced pluripotent stem cells.
    Limphong P; Zhang H; Christians E; Liu Q; Riedel M; Ivey K; Cheng P; Mitzelfelt K; Taylor G; Winge D; Srivastava D; Benjamin I
    Stem Cells Transl Med; 2013 Mar; 2(3):161-6. PubMed ID: 23430692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy.
    Mosqueira D; Mannhardt I; Bhagwan JR; Lis-Slimak K; Katili P; Scott E; Hassan M; Prondzynski M; Harmer SC; Tinker A; Smith JGW; Carrier L; Williams PM; Gaffney D; Eschenhagen T; Hansen A; Denning C
    Eur Heart J; 2018 Nov; 39(43):3879-3892. PubMed ID: 29741611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Method for Contraction Force Measurement of hiPSC-Derived Engineered Cardiac Tissues.
    Fujiwara Y; Deguchi K; Miki K; Nishimoto T; Yoshida Y
    Methods Mol Biol; 2021; 2320():171-180. PubMed ID: 34302658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.