These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 26784947)

  • 1. Analysis of the Involvement of Different Ceramide Variants in the Response to Hydroxyurea Stress in Baker's Yeast.
    Chen PW; Fonseca LL; Hannun YA; Voit EO
    PLoS One; 2016; 11(1):e0146839. PubMed ID: 26784947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of the Heat Stress Response of Ceramides with Different Fatty-Acyl Chain Lengths in Baker's Yeast.
    Chen PW; Fonseca LL; Hannun YA; Voit EO
    PLoS Comput Biol; 2015 Aug; 11(8):e1004373. PubMed ID: 26241868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct signaling roles of ceramide species in yeast revealed through systematic perturbation and systems biology analyses.
    Montefusco DJ; Chen L; Matmati N; Lu S; Newcomb B; Cooper GF; Hannun YA; Lu X
    Sci Signal; 2013 Oct; 6(299):rs14. PubMed ID: 24170935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of C18:1-phytoceramide as the candidate lipid mediator for hydroxyurea resistance in yeast.
    Matmati N; Metelli A; Tripathi K; Yan S; Mohanty BK; Hannun YA
    J Biol Chem; 2013 Jun; 288(24):17272-84. PubMed ID: 23620586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae.
    Dickson RC; Sumanasekera C; Lester RL
    Prog Lipid Res; 2006 Nov; 45(6):447-65. PubMed ID: 16730802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An essential function of sphingolipids in yeast cell division.
    Epstein S; Castillon GA; Qin Y; Riezman H
    Mol Microbiol; 2012 Jun; 84(6):1018-32. PubMed ID: 22616608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides.
    Cerantola V; Guillas I; Roubaty C; Vionnet C; Uldry D; Knudsen J; Conzelmann A
    Mol Microbiol; 2009 Mar; 71(6):1523-37. PubMed ID: 19210614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inducible ER-Golgi tether facilitates ceramide transport to alleviate lipotoxicity.
    Liu LK; Choudhary V; Toulmay A; Prinz WA
    J Cell Biol; 2017 Jan; 216(1):131-147. PubMed ID: 28011845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.
    Murakami S; Shimamoto T; Nagano H; Tsuruno M; Okuhara H; Hatanaka H; Tojo H; Kodama Y; Funato K
    Sci Rep; 2015 Nov; 5():16319. PubMed ID: 26573460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of expression of genes in the sphingolipid synthesis pathway on the biosynthesis of ceramide in Saccharomyces cerevisiae.
    Kim SK; Noh YH; Koo JR; Yun HS
    J Microbiol Biotechnol; 2010 Feb; 20(2):356-62. PubMed ID: 20208441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast.
    Lin X; Zhang CY; Bai XW; Feng B; Xiao DG
    Int J Food Microbiol; 2015 Mar; 197():15-21. PubMed ID: 25555226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ceramide synthases as potential targets for therapeutic intervention in human diseases.
    Park JW; Park WJ; Futerman AH
    Biochim Biophys Acta; 2014 May; 1841(5):671-81. PubMed ID: 24021978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Sphingolipid biosynthesis and traffic in yeast].
    Funato K
    Seikagaku; 2002 Apr; 74(4):317-21. PubMed ID: 12030035
    [No Abstract]   [Full Text] [Related]  

  • 14. Ceramide metabolism in mouse tissue.
    Schiffmann S; Birod K; Männich J; Eberle M; Wegner MS; Wanger R; Hartmann D; Ferreiros N; Geisslinger G; Grösch S
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1886-94. PubMed ID: 23792024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection mechanisms against aberrant metabolism of sphingolipids in budding yeast.
    Tani M; Funato K
    Curr Genet; 2018 Oct; 64(5):1021-1028. PubMed ID: 29556757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ceramide, stress, and a "LAG" in aging.
    Obeid LM; Hannun YA
    Sci Aging Knowledge Environ; 2003 Oct; 2003(39):PE27. PubMed ID: 14523222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxylation state of fatty acid and long-chain base moieties of sphingolipid determine the sensitivity to growth inhibition due to AUR1 repression in Saccharomyces cerevisiae.
    Tani M; Kuge O
    Biochem Biophys Res Commun; 2012 Jan; 417(2):673-8. PubMed ID: 22166213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sphingolipid salvage pathway in ceramide metabolism and signaling.
    Kitatani K; Idkowiak-Baldys J; Hannun YA
    Cell Signal; 2008 Jun; 20(6):1010-8. PubMed ID: 18191382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct roles for de novo versus hydrolytic pathways of sphingolipid biosynthesis in Saccharomyces cerevisiae.
    Cowart LA; Okamoto Y; Lu X; Hannun YA
    Biochem J; 2006 Feb; 393(Pt 3):733-40. PubMed ID: 16201964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functions of Ceramide Synthase Paralogs YPR114w and YJR116w of Saccharomyces cerevisiae.
    Mallela SK; Almeida R; Ejsing CS; Conzelmann A
    PLoS One; 2016; 11(1):e0145831. PubMed ID: 26752183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.