BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 26784979)

  • 21. Characteristics of vitamin C immobilized particles and sodium alginate beads containing immobilized particles.
    Desai KG; Liu C; Park HJ
    J Microencapsul; 2005 Jun; 22(4):363-76. PubMed ID: 16214785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smart designing of new hybrid materials based on brushite-alginate and monetite-alginate microspheres: bio-inspired for sequential nucleation and growth.
    Amer W; Abdelouahdi K; Ramananarivo HR; Fihri A; El Achaby M; Zahouily M; Barakat A; Djessas K; Clark J; Solhy A
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():341-6. PubMed ID: 24411386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrophobically modified biomineralized polysaccharide alginate membrane for sustained smart drug delivery.
    Shi J; Zhang Z; Qi W; Cao S
    Int J Biol Macromol; 2012 Apr; 50(3):747-53. PubMed ID: 22197794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Montmorillonite-alginate nanocomposite as a drug delivery system--incorporation and in vitro release of irinotecan.
    Iliescu RI; Andronescu E; Ghitulica CD; Voicu G; Ficai A; Hoteteu M
    Int J Pharm; 2014 Mar; 463(2):184-92. PubMed ID: 23998956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viscoelastic properties of composites of calcium alginate and hydroxyapatite.
    Wands I; Shepherd DE; Hukins DW
    J Mater Sci Mater Med; 2008 Jun; 19(6):2417-21. PubMed ID: 18197363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering.
    Yan J; Miao Y; Tan H; Zhou T; Ling Z; Chen Y; Xing X; Hu X
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():274-84. PubMed ID: 27040220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel alginate-di-aldehyde cross-linked gelatin/nano-hydroxyapatite bioscaffolds for soft tissue regeneration.
    Mehedi Hasan M; Nuruzzaman Khan M; Haque P; Rahman MM
    Int J Biol Macromol; 2018 Oct; 117():1110-1117. PubMed ID: 29885393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of MSC properties in two different hydrogels. Impact of mechanical properties.
    Yu H; Cauchois G; Louvet N; Chen Y; Rahouadj R; Huselstein C
    Biomed Mater Eng; 2017; 28(s1):S193-S200. PubMed ID: 28372295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modifying alginate with early embryonic extracellular matrix, laminin, and hyaluronic acid for adipose tissue engineering.
    Chen YS; Chen YY; Hsueh YS; Tai HC; Lin FH
    J Biomed Mater Res A; 2016 Mar; 104(3):669-677. PubMed ID: 26514819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oral delivery of insulin from alginate/chitosan crosslinked by glutaraldehyde.
    Tahtat D; Mahlous M; Benamer S; Khodja AN; Oussedik-Oumehdi H; Laraba-Djebari F
    Int J Biol Macromol; 2013 Jul; 58():160-8. PubMed ID: 23567292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxyapatite-alginate nanocomposite as drug delivery matrix for sustained release of ciprofloxacin.
    Venkatasubbu GD; Ramasamy S; Ramakrishnan V; Kumar J
    J Biomed Nanotechnol; 2011 Dec; 7(6):759-67. PubMed ID: 22416574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo.
    Jo YY; Kim SG; Kwon KJ; Kweon H; Chae WS; Yang WG; Lee EY; Seok H
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28420224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of protein immobilization capacity on various carbon nanotube embedded hydrogel biomaterials.
    Derkus B; Emregul KC; Emregul E
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():132-40. PubMed ID: 26249574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium phosphate-alginate microspheres as enzyme delivery matrices.
    Ribeiro CC; Barrias CC; Barbosa MA
    Biomaterials; 2004 Aug; 25(18):4363-73. PubMed ID: 15046927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release.
    Hasnain MS; Nayak AK; Singh M; Tabish M; Ansari MT; Ara TJ
    Int J Biol Macromol; 2016 Feb; 83():71-7. PubMed ID: 26608007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Octacalcium phosphate-precipitated alginate scaffold for bone regeneration.
    Fuji T; Anada T; Honda Y; Shiwaku Y; Koike H; Kamakura S; Sasaki K; Suzuki O
    Tissue Eng Part A; 2009 Nov; 15(11):3525-35. PubMed ID: 19456237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gelation and biocompatibility of injectable alginate-calcium phosphate gels for bone regeneration.
    Cardoso DA; van den Beucken JJ; Both LL; Bender J; Jansen JA; Leeuwenburgh SC
    J Biomed Mater Res A; 2014 Mar; 102(3):808-17. PubMed ID: 23589413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of osteoblastic differentiation in alginate gel beads with bioactive octacalcium phosphate particles.
    Endo K; Anada T; Yamada M; Seki M; Sasaki K; Suzuki O
    Biomed Mater; 2015 Dec; 10(6):065019. PubMed ID: 26657659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering.
    Bi YG; Lin ZT; Deng ST
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():576-583. PubMed ID: 30948094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering.
    Luo Y; Lode A; Wu C; Chang J; Gelinsky M
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6541-9. PubMed ID: 25761464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.