These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 26784982)
1. β-lactoglobulin stabilized nanemulsions--Formulation and process factors affecting droplet size and nanoemulsion stability. Ali A; Mekhloufi G; Huang N; Agnely F Int J Pharm; 2016 Mar; 500(1-2):291-304. PubMed ID: 26784982 [TBL] [Abstract][Full Text] [Related]
2. Effect of high pressure homogenization on the structure and the interfacial and emulsifying properties of β-lactoglobulin. Ali A; Le Potier I; Huang N; Rosilio V; Cheron M; Faivre V; Turbica I; Agnely F; Mekhloufi G Int J Pharm; 2018 Feb; 537(1-2):111-121. PubMed ID: 29241702 [TBL] [Abstract][Full Text] [Related]
3. Stabilization mechanism of oil-in-water emulsions by β-lactoglobulin and gum arabic. Bouyer E; Mekhloufi G; Le Potier I; de Kerdaniel Tdu F; Grossiord JL; Rosilio V; Agnely F J Colloid Interface Sci; 2011 Feb; 354(2):467-77. PubMed ID: 21145063 [TBL] [Abstract][Full Text] [Related]
4. Interactions of chitin nanocrystals with β-lactoglobulin at the oil-water interface, studied by drop shape tensiometry. Gülseren I; Corredig M Colloids Surf B Biointerfaces; 2013 Nov; 111():672-9. PubMed ID: 23907056 [TBL] [Abstract][Full Text] [Related]
5. Influence of free protein on flocculation stability of beta-lactoglobulin stabilized oil-in-water emulsions at neutral pH and ambient temperature. Kim HJ; Decker EA; McClements DJ Langmuir; 2004 Nov; 20(24):10394-8. PubMed ID: 15544365 [TBL] [Abstract][Full Text] [Related]
6. Influence of pH and iota-carrageenan concentration on physicochemical properties and stability of beta-lactoglobulin-stabilized oil-in-water emulsions. Gu YS; Decker EA; McClements DJ J Agric Food Chem; 2004 Jun; 52(11):3626-32. PubMed ID: 15161241 [TBL] [Abstract][Full Text] [Related]
7. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B. Knudsen JC; Øgendal LH; Skibsted LH Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877 [TBL] [Abstract][Full Text] [Related]
8. Influence of environmental stresses on stability of oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin-iota-carrageenan membranes. Gu YS; Regnier L; McClements DJ J Colloid Interface Sci; 2005 Jun; 286(2):551-8. PubMed ID: 15897070 [TBL] [Abstract][Full Text] [Related]
9. Influence of protein concentration and order of addition on thermal stability of beta-lactoglobulin stabilized n-hexadecane oil-in-water emulsions at neutral pH. Kim HJ; Decker EA; McClements DJ Langmuir; 2005 Jan; 21(1):134-9. PubMed ID: 15620294 [TBL] [Abstract][Full Text] [Related]
10. Structural rearrangement of β-lactoglobulin at different oil-water interfaces and its effect on emulsion stability. Zhai J; Wooster TJ; Hoffmann SV; Lee TH; Augustin MA; Aguilar MI Langmuir; 2011 Aug; 27(15):9227-36. PubMed ID: 21668007 [TBL] [Abstract][Full Text] [Related]
11. Production and characterization of oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin-pectin membranes. Moreau L; Kim HJ; Decker EA; McClements DJ J Agric Food Chem; 2003 Oct; 51(22):6612-7. PubMed ID: 14558785 [TBL] [Abstract][Full Text] [Related]
12. Adsorption and structural change of beta-lactoglobulin at the diacylglycerol-water interface. Sakuno MM; Matsumoto S; Kawai S; Taihei K; Matsumura Y Langmuir; 2008 Oct; 24(20):11483-8. PubMed ID: 18803411 [TBL] [Abstract][Full Text] [Related]
13. The coalescence stability of protein-stabilized emulsions estimated by analytical photo-centrifugation. Cheetangdee N; Oki M; Fukada K J Oleo Sci; 2011; 60(8):419-27. PubMed ID: 21768743 [TBL] [Abstract][Full Text] [Related]
14. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats. He W; Tan Y; Tian Z; Chen L; Hu F; Wu W Int J Nanomedicine; 2011; 6():521-33. PubMed ID: 21468355 [TBL] [Abstract][Full Text] [Related]
15. Interfacial behaviour of β-lactoglobulin aggregates at the oil-water interface studied using particle tracking and dilatational rheology. Yang N; Ye J; Li J; Hu B; Leheny RL; Nishinari K; Fang Y Soft Matter; 2021 Mar; 17(10):2973-2984. PubMed ID: 33595572 [TBL] [Abstract][Full Text] [Related]
16. Encapsulation of epigallocatechin-3-gallate (EGCG) using oil-in-water (O/W) submicrometer emulsions stabilized by ι-carrageenan and β-lactoglobulin. Ru Q; Yu H; Huang Q J Agric Food Chem; 2010 Oct; 58(19):10373-81. PubMed ID: 20843038 [TBL] [Abstract][Full Text] [Related]
17. Physical properties and stability evaluation of fish oil-in-water emulsions stabilized using thiol-modified β-lactoglobulin fibrils-chitosan complex. Chang HW; Tan TB; Tan PY; Abas F; Lai OM; Wang Y; Wang Y; Nehdi IA; Tan CP Food Res Int; 2018 Mar; 105():482-491. PubMed ID: 29433239 [TBL] [Abstract][Full Text] [Related]
18. Comparison of droplet flocculation in hexadecane oil-in-water emulsions stabilized by beta-lactoglobulin at pH 3 and 7. Kim HJ; Decker EA; McClements DJ Langmuir; 2004 Jul; 20(14):5753-8. PubMed ID: 16459589 [TBL] [Abstract][Full Text] [Related]
19. Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology. Karadag A; Yang X; Ozcelik B; Huang Q J Agric Food Chem; 2013 Mar; 61(9):2130-9. PubMed ID: 23330985 [TBL] [Abstract][Full Text] [Related]
20. Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature. Yu L; Li C; Xu J; Hao J; Sun D Langmuir; 2012 Oct; 28(41):14547-52. PubMed ID: 22985401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]