These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Fabrication of high performance bioanode based on fruitful association of dendrimer and carbon nanotube used for design O2/glucose membrane-less biofuel cell with improved bilirubine oxidase biocathode. Korani A; Salimi A Biosens Bioelectron; 2013 Dec; 50():186-93. PubMed ID: 23850787 [TBL] [Abstract][Full Text] [Related]
3. 5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O Giroud F; Sawada K; Taya M; Cosnier S Biosens Bioelectron; 2017 Jan; 87():957-963. PubMed ID: 27665518 [TBL] [Abstract][Full Text] [Related]
4. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials. Scherbahn V; Putze MT; Dietzel B; Heinlein T; Schneider JJ; Lisdat F Biosens Bioelectron; 2014 Nov; 61():631-8. PubMed ID: 24967753 [TBL] [Abstract][Full Text] [Related]
5. Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots. Zhao M; Gao Y; Sun J; Gao F Anal Chem; 2015 Mar; 87(5):2615-22. PubMed ID: 25666266 [TBL] [Abstract][Full Text] [Related]
6. Development of a Sensitive Self-Powered Glucose Biosensor Based on an Enzymatic Biofuel Cell. Chansaenpak K; Kamkaew A; Lisnund S; Prachai P; Ratwirunkit P; Jingpho T; Blay V; Pinyou P Biosensors (Basel); 2021 Jan; 11(1):. PubMed ID: 33430194 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of carbon-felt-based multi-enzyme immobilized anodes to oxidize sucrose for biofuel cells. Handa Y; Yamagiwa K; Ikeda Y; Yanagisawa Y; Watanabe S; Yabuuchi N; Komaba S Chemphyschem; 2014 Jul; 15(10):2145-51. PubMed ID: 24826925 [TBL] [Abstract][Full Text] [Related]
8. Application of an enzyme-based biofuel cell containing a bioelectrode modified with deoxyribonucleic acid-wrapped single-walled carbon nanotubes to serum. Lee JY; Shin HY; Kang SW; Park C; Kim SW Enzyme Microb Technol; 2011 Jan; 48(1):80-4. PubMed ID: 22112774 [TBL] [Abstract][Full Text] [Related]
9. Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Yin S; Jin Z; Miyake T Biosens Bioelectron; 2019 Sep; 141():111471. PubMed ID: 31252257 [TBL] [Abstract][Full Text] [Related]
10. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes. MacAodha D; Ó Conghaile P; Egan B; Kavanagh P; Leech D Chemphyschem; 2013 Jul; 14(10):2302-7. PubMed ID: 23788272 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of carbon nanotubes and charge transfer complex-based electrodes for a glucose/oxygen biofuel cell. Koo MH; Yoon HH J Nanosci Nanotechnol; 2013 Nov; 13(11):7434-8. PubMed ID: 24245269 [TBL] [Abstract][Full Text] [Related]
12. Combination of laccase and catalase in construction of H2O2-O2 based biocathode for applications in glucose biofuel cells. Ammam M; Fransaer J Biosens Bioelectron; 2013 Jan; 39(1):274-81. PubMed ID: 22906713 [TBL] [Abstract][Full Text] [Related]
13. A shriveled rectangular carbon tube with the concave surface for high-performance enzymatic glucose/O Kang Z; Job Zhang YP; Zhu Z Biosens Bioelectron; 2019 May; 132():76-83. PubMed ID: 30856430 [TBL] [Abstract][Full Text] [Related]
14. A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes. Lalaoui N; de Poulpiquet A; Haddad R; Le Goff A; Holzinger M; Gounel S; Mermoux M; Infossi P; Mano N; Lojou E; Cosnier S Chem Commun (Camb); 2015 May; 51(35):7447-50. PubMed ID: 25845356 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional graphene-carbon nanotube hybrid for high-performance enzymatic biofuel cells. Prasad KP; Chen Y; Chen P ACS Appl Mater Interfaces; 2014 Mar; 6(5):3387-93. PubMed ID: 24533856 [TBL] [Abstract][Full Text] [Related]
16. Self-powered competitive immunosensor driven by biofuel cell based on hollow-channel paper analytical devices. Li S; Wang Y; Ge S; Yu J; Yan M Biosens Bioelectron; 2015 Sep; 71():18-24. PubMed ID: 25880834 [TBL] [Abstract][Full Text] [Related]
17. Glucose oxidase/cellulose-carbon nanotube composite paper as a biocompatible bioelectrode for biofuel cells. Won K; Kim YH; An S; Lee HJ; Park S; Choi YK; Kim JH; Hwang HI; Kim HJ; Kim H; Lee SH Appl Biochem Biotechnol; 2013 Nov; 171(5):1194-202. PubMed ID: 23508863 [TBL] [Abstract][Full Text] [Related]
18. A novel three-dimensional carbonized PANI Kang Z; Jiao K; Cheng J; Peng R; Jiao S; Hu Z Biosens Bioelectron; 2018 Mar; 101():60-65. PubMed ID: 29040915 [TBL] [Abstract][Full Text] [Related]
19. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film. Tan Y; Deng W; Ge B; Xie Q; Huang J; Yao S Biosens Bioelectron; 2009 Mar; 24(7):2225-31. PubMed ID: 19153037 [TBL] [Abstract][Full Text] [Related]
20. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase. Tsujimura S Biosci Biotechnol Biochem; 2019 Jan; 83(1):39-48. PubMed ID: 30274547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]