BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 26785355)

  • 1. Synthesis, Structural and Micromechanical Properties of 3D Hyaluronic Acid-Based Cryogel Scaffolds.
    Oelschlaeger C; Bossler F; Willenbacher N
    Biomacromolecules; 2016 Feb; 17(2):580-9. PubMed ID: 26785355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring of Physical Properties in Macroporous Poly(isocyanopeptide) Cryogels.
    Gerrits L; Bakker B; Hendriks LD; Engels S; Hammink R; Kouwer PHJ
    Biomacromolecules; 2024 Jun; 25(6):3464-3474. PubMed ID: 38743442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cartilage-like electrostatic stiffening of responsive cryogel scaffolds.
    Offeddu GS; Mela I; Jeggle P; Henderson RM; Smoukov SK; Oyen ML
    Sci Rep; 2017 Feb; 7():42948. PubMed ID: 28230077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry-driven cell organization determines tissue growths in scaffold pores: consequences for fibronectin organization.
    Joly P; Duda GN; Schöne M; Welzel PB; Freudenberg U; Werner C; Petersen A
    PLoS One; 2013; 8(9):e73545. PubMed ID: 24039979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Bath 3D Printing of Anisotropic Shape-Memory Cryogels Functionalized with Bone-Bioactive Nanoparticles.
    Castanheira EJ; Monteiro LPG; Gaspar VM; Correia TR; Rodrigues JMM; Mano JF
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18386-18399. PubMed ID: 38591243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures.
    Srbova L; Arasalo O; Lehtonen AJ; Pokki J
    Soft Matter; 2024 Apr; 20(16):3483-3498. PubMed ID: 38587658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-modified injectable poly(ethylene-glycol) diacrylate-based cryogels for localized gene delivery.
    Dalal N; Dandia H; Ingle A; Tayalia P
    Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38772344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring microstructure and mechanical properties of pectin cryogels by modulate intensity of ionic interconnection.
    Ma Y; Bi J; Wu Z; Feng S; Yi J
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130028. PubMed ID: 38340927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactic Acid-Induced Colloidal Microrheology of Synovial Fluids.
    Kakati N; Ahari D; Parmar PR; Deshmukh OS; Bandyopadhyay D
    ACS Biomater Sci Eng; 2024 May; 10(5):3378-3386. PubMed ID: 38517700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging.
    Kotlarchyk MA; Botvinick EL; Putnam AJ
    J Phys Condens Matter; 2010 May; 22(19):194121. PubMed ID: 20877437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of the tumor stromal microenvironment probed
    Staunton JR; Vieira W; Fung KL; Lake R; Devine A; Tanner K
    Cell Mol Bioeng; 2016 Sep; 9(3):398-417. PubMed ID: 27752289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications.
    Savina IN; Ingavle GC; Cundy AB; Mikhalovsky SV
    Sci Rep; 2016 Feb; 6():21154. PubMed ID: 26883390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan versus Carboxymethyl Chitosan Cryogels: Bacterial Colonization, Human Embryonic Kidney 293T Cell Culturing and Co-Culturing.
    Boroda A; Privar Y; Maiorova M; Beleneva I; Eliseikina M; Skatova A; Marinin D; Bratskaya S
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sponge-like Scaffolds for Colorectal Cancer 3D Models: Substrate-Driven Difference in Micro-Tumors Morphology.
    Boroda A; Privar Y; Maiorova M; Skatova A; Bratskaya S
    Biomimetics (Basel); 2022 May; 7(2):. PubMed ID: 35645183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Modification of Hyaluronan and Their Biomedical Applications.
    Hintze V; Schnabelrauch M; Rother S
    Front Chem; 2022; 10():830671. PubMed ID: 35223772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration.
    Wartenberg A; Weisser J; Schnabelrauch M
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials.
    Savina IN; Zoughaib M; Yergeshov AA
    Gels; 2021 Jun; 7(3):. PubMed ID: 34203439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings.
    Hu Y; Domínguez CM; Bauer J; Weigel S; Schipperges A; Oelschlaeger C; Willenbacher N; Keppler S; Bastmeyer M; Heißler S; Wöll C; Scharnweber T; Rabe KS; Niemeyer CM
    Nat Commun; 2019 Dec; 10(1):5522. PubMed ID: 31797918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure, local viscoelasticity and cell culture suitability of 3D hybrid HA/collagen scaffolds.
    Roether J; Bertels S; Oelschlaeger C; Bastmeyer M; Willenbacher N
    PLoS One; 2018; 13(12):e0207397. PubMed ID: 30566463
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.