BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26785520)

  • 1. [Distinct roles of the direct and indirect pathways in the basal ganglia circuit mechanism].
    Morita M; Hikida T
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2015 Nov; 35(5-6):107-11. PubMed ID: 26785520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms of the nucleus accumbens circuit in reward and aversive learning.
    Hikida T; Morita M; Macpherson T
    Neurosci Res; 2016 Jul; 108():1-5. PubMed ID: 26827817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior.
    Hikida T; Kimura K; Wada N; Funabiki K; Nakanishi S
    Neuron; 2010 Jun; 66(6):896-907. PubMed ID: 20620875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors.
    Nakanishi S; Hikida T; Yawata S
    Neuroscience; 2014 Dec; 282():49-59. PubMed ID: 24769227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway-specific modulation of nucleus accumbens in reward and aversive behavior via selective transmitter receptors.
    Hikida T; Yawata S; Yamaguchi T; Danjo T; Sasaoka T; Wang Y; Nakanishi S
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):342-7. PubMed ID: 23248274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basal Ganglia Circuit Mechanisms in Cognitive Learning.
    Hikida T; MacPherson T; Morita M
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2017 Apr; 37(2):35-8. PubMed ID: 30489042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic insights into striatal function and behavior.
    Lenz JD; Lobo MK
    Behav Brain Res; 2013 Oct; 255():44-54. PubMed ID: 23628212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes in neural networks by conditional transgenic approach: a key to our comprehension of neuro-psychiatric disorders in the basal ganglia system].
    Schiffmann SN
    Bull Mem Acad R Med Belg; 2009; 164(7-9):171-8; discussion 178-80. PubMed ID: 20218186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning.
    Morita K; Kawaguchi Y
    Eur J Neurosci; 2015 Aug; 42(4):2003-21. PubMed ID: 26095906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restructuring of basal ganglia circuitry and associated behaviors triggered by low striatal D2 receptor expression: implications for substance use disorders.
    Dobbs LK; Lemos JC; Alvarez VA
    Genes Brain Behav; 2017 Jan; 16(1):56-70. PubMed ID: 27860248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Striosomes Target Nigral Dopamine-Containing Neurons via Direct-D1 and Indirect-D2 Pathways Paralleling Classic Direct-Indirect Basal Ganglia Systems.
    Lazaridis I; Crittenden JR; Ahn G; Hirokane K; Yoshida T; Mahar A; Skara V; Meletis K; Loftus JH; Parvataneni K; Ting JT; Hueske E; Matsushima A; Graybiel AM
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs.
    Gremel CM; Lovinger DM
    Genes Brain Behav; 2017 Jan; 16(1):71-85. PubMed ID: 27457495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined lesions of direct and indirect basal ganglia pathways but not changes in dopamine levels explain learning deficits in patients with Huntington's disease.
    Schroll H; Beste C; Hamker FH
    Eur J Neurosci; 2015 May; 41(9):1227-44. PubMed ID: 25778633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathway-specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens.
    Yawata S; Yamaguchi T; Danjo T; Hikida T; Nakanishi S
    Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12764-9. PubMed ID: 22802650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders.
    van der Stelt M; Di Marzo V
    Eur J Pharmacol; 2003 Nov; 480(1-3):133-50. PubMed ID: 14623357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balancing the basal ganglia circuitry: a possible new role for dopamine D2 receptors in health and disease.
    Cazorla M; Kang UJ; Kellendonk C
    Mov Disord; 2015 Jun; 30(7):895-903. PubMed ID: 26018615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning.
    Kelley AE
    Neurosci Biobehav Rev; 2004 Jan; 27(8):765-76. PubMed ID: 15019426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parcellation of the striatal complex into dorsal and ventral districts.
    Chen SY; Lu KM; Ko HA; Huang TH; Hao JH; Yan YT; Chang SL; Evans SM; Liu FC
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7418-7429. PubMed ID: 32170006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the differential functions and regulation of striatal neuron sub-populations in motor control, reward, and motivational processes.
    Ena S; de Kerchove d'Exaerde A; Schiffmann SN
    Front Behav Neurosci; 2011; 5():47. PubMed ID: 21847377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Homeostatic regulation of basal ganglia circuit for flexible behavior].
    Hikida T
    Nihon Yakurigaku Zasshi; 2018; 152(6):295-298. PubMed ID: 30531100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.