These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26785700)

  • 1. Protein thermal denaturation is modulated by central residues in the protein structure network.
    Souza VP; Ikegami CM; Arantes GM; Marana SR
    FEBS J; 2016 Mar; 283(6):1124-38. PubMed ID: 26785700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single mutations outside the active site affect the substrate specificity in a β-glycosidase.
    Mendonça LM; Marana SR
    Biochim Biophys Acta; 2011 Dec; 1814(12):1616-23. PubMed ID: 21920467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations close to a hub residue affect the distant active site of a GH1 β-glucosidase.
    Souza VP; Ikegami CM; Arantes GM; Marana SR
    PLoS One; 2018; 13(6):e0198696. PubMed ID: 29874288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role in the substrate specificity and catalysis of residues forming the substrate aglycone-binding site of a beta-glycosidase.
    Mendonça LM; Marana SR
    FEBS J; 2008 May; 275(10):2536-47. PubMed ID: 18422657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the interdependency between residues that bind the substrate in a beta-glycosidase.
    Tomassi MH; Rozenfeld JH; Gonçalves LM; Marana SR
    Braz J Med Biol Res; 2010 Jan; 43(1):8-12. PubMed ID: 20027479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single amino acid residue determines the ratio of hydrolysis to transglycosylation catalyzed by β-glucosidases.
    Frutuoso MA; Marana SR
    Protein Pept Lett; 2013 Jan; 20(1):102-6. PubMed ID: 22670763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of increased resistance to thermal denaturation induced by single amino acid substitution in the sequence of beta-glucosidase A from Bacillus polymyxa.
    Sanz-Aparicio J; Hermoso JA; Martínez-Ripoll M; González B; López-Camacho C; Polaina J
    Proteins; 1998 Dec; 33(4):567-76. PubMed ID: 9849940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sets of covariant residues modulate the activity and thermal stability of GH1 β-glucosidases.
    Tamaki FK; Textor LC; Polikarpov I; Marana SR
    PLoS One; 2014; 9(5):e96627. PubMed ID: 24804841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1.
    Hwa KY; Subramani B; Shen ST; Lee YM
    Enzyme Microb Technol; 2015 Sep; 77():14-20. PubMed ID: 26138395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a novel thermostable β-glucosidase from a metagenomic library of termite gut.
    Wang Q; Qian C; Zhang XZ; Liu N; Yan X; Zhou Z
    Enzyme Microb Technol; 2012 Dec; 51(6-7):319-24. PubMed ID: 23040386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The catalytic and other residues essential for the activity of the midgut trehalase from Spodoptera frugiperda.
    Silva MC; Terra WR; Ferreira C
    Insect Biochem Mol Biol; 2010 Oct; 40(10):733-41. PubMed ID: 20691783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of amino-acid residues Q39 and E451 in the determination of substrate specificity of the Spodoptera frugiperda beta-glycosidase.
    Marana SR; Terra WR; Ferreira C
    Eur J Biochem; 2002 Aug; 269(15):3705-14. PubMed ID: 12153567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional analyses of beta-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3.
    Pozzo T; Pasten JL; Karlsson EN; Logan DT
    J Mol Biol; 2010 Apr; 397(3):724-39. PubMed ID: 20138890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dramatic stabilization of an SH3 domain by a single substitution: roles of the folded and unfolded states.
    Mok YK; Elisseeva EL; Davidson AR; Forman-Kay JD
    J Mol Biol; 2001 Mar; 307(3):913-28. PubMed ID: 11273710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homodimerization of a glycoside hydrolase family GH1 β-glucosidase suggests distinct activity of enzyme different states.
    Otsuka FAM; Chagas RS; Almeida VM; Marana SR
    Protein Sci; 2020 Sep; 29(9):1879-1889. PubMed ID: 32597558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of an ionic network leads to accelerated thermal denaturation of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima.
    Pappenberger G; Schurig H; Jaenicke R
    J Mol Biol; 1997 Dec; 274(4):676-83. PubMed ID: 9417944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Half-Barrels Derived from a (β/α)8 Barrel β-Glycosidase Undergo an Activation Process.
    Beton D; Marana SR
    PLoS One; 2015; 10(10):e0139673. PubMed ID: 26431042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A network representation of protein structures: implications for protein stability.
    Brinda KV; Vishveshwara S
    Biophys J; 2005 Dec; 89(6):4159-70. PubMed ID: 16150969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a new ionic pair on the unfolding activation barrier of beta-glucosidase B.
    Zubillaga RA; García-Hernández E; Camarillo-Cadena M; León M; Polaina J
    Protein Pept Lett; 2006; 13(2):113-8. PubMed ID: 16472071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic effects of proline introduction on protein stability.
    Prajapati RS; Das M; Sreeramulu S; Sirajuddin M; Srinivasan S; Krishnamurthy V; Ranjani R; Ramakrishnan C; Varadarajan R
    Proteins; 2007 Feb; 66(2):480-91. PubMed ID: 17034035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.