These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26785761)

  • 61. Dynamics of a 1D array of inhibitory coupled chemical oscillators in microdroplets with global negative feedback.
    Proskurkin IS; Vanag VK
    Phys Chem Chem Phys; 2018 Jun; 20(23):16126-16137. PubMed ID: 29855029
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An integrated tunable interferometer controlled by liquid diffusion in polydimethylsiloxane.
    Zou Y; Shen Z; Chen X; Di Z; Chen X
    Opt Express; 2012 Aug; 20(17):18931-6. PubMed ID: 23038532
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An elegant method to study an isolated spiral wave in a thin layer of a batch Belousov-Zhabotinsky reaction under oxygen-free conditions.
    Luengviriya C; Storb U; Hauser MJ; Müller SC
    Phys Chem Chem Phys; 2006 Mar; 8(12):1425-9. PubMed ID: 16633624
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Droplet microfluidics.
    Teh SY; Lin R; Hung LH; Lee AP
    Lab Chip; 2008 Feb; 8(2):198-220. PubMed ID: 18231657
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microfluidic production of biopolymer microcapsules with controlled morphology.
    Zhang H; Tumarkin E; Peerani R; Nie Z; Sullan RM; Walker GC; Kumacheva E
    J Am Chem Soc; 2006 Sep; 128(37):12205-10. PubMed ID: 16967971
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fabrication of novel silicone capsules with tunable mechanical properties by microfluidic techniques.
    Vilanova N; Rodríguez-Abreu C; Fernández-Nieves A; Solans C
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5247-52. PubMed ID: 23659612
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.
    Tan YC; Lee AP
    Lab Chip; 2005 Oct; 5(10):1178-83. PubMed ID: 16175277
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics.
    Wang JT; Wang J; Han JJ
    Small; 2011 Jul; 7(13):1728-54. PubMed ID: 21618428
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synchronized reinjection and coalescence of droplets in microfluidics.
    Lee M; Collins JW; Aubrecht DM; Sperling RA; Solomon L; Ha JW; Yi GR; Weitz DA; Manoharan VN
    Lab Chip; 2014 Feb; 14(3):509-13. PubMed ID: 24292863
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chemical waves in self-oscillating gels.
    Miyakawa K; Sakamoto F; Yoshida R; Kokufuta E; Yamaguchi T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):793-8. PubMed ID: 11088535
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemotactic droplet swimmers in complex geometries.
    Jin C; Hokmabad BV; Baldwin KA; Maass CC
    J Phys Condens Matter; 2018 Feb; 30(5):054003. PubMed ID: 29243668
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Towards molecular computing: co-development of microfluidic devices and chemical reaction media.
    King PH; Corsi JC; Pan BH; Morgan H; de Planque MR; Zauner KP
    Biosystems; 2012 Jul; 109(1):18-23. PubMed ID: 22306034
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Droplet-based microfluidic platform for high-throughput, multi-parameter screening of photosensitizer activity.
    Cho S; Kang DK; Sim S; Geier F; Kim JY; Niu X; Edel JB; Chang SI; Wootton RC; Elvira KS; deMello AJ
    Anal Chem; 2013 Sep; 85(18):8866-72. PubMed ID: 23937555
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rounded multi-level microchannels with orifices made in one exposure enable aqueous two-phase system droplet microfluidics.
    Lai D; Frampton JP; Sriram H; Takayama S
    Lab Chip; 2011 Oct; 11(20):3551-4. PubMed ID: 21892481
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Monodisperse Micro-Oil Droplets Stabilized by Polymerizable Phospholipid Coatings as Potential Drug Carriers.
    Park Y; Pham TA; Beigie C; Cabodi M; Cleveland RO; Nagy JO; Wong JY
    Langmuir; 2015 Sep; 31(36):9762-70. PubMed ID: 26303989
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A recursive microfluidic platform to explore the emergence of chemical evolution.
    Doran D; Rodriguez-Garcia M; Turk-MacLeod R; Cooper GJT; Cronin L
    Beilstein J Org Chem; 2017; 13():1702-1709. PubMed ID: 28904613
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis.
    Fornell A; Nilsson J; Jonsson L; Periyannan Rajeswari PK; Joensson HN; Tenje M
    Anal Chem; 2015 Oct; 87(20):10521-6. PubMed ID: 26422760
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones.
    Dorvee JR; Derfus AM; Bhatia SN; Sailor MJ
    Nat Mater; 2004 Dec; 3(12):896-9. PubMed ID: 15531887
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Configurable NOR gate arrays from Belousov-Zhabotinsky micro-droplets.
    Wang AL; Gold JM; Tompkins N; Heymann M; Harrington KI; Fraden S
    Eur Phys J Spec Top; 2016 Feb; 225(1):211-227. PubMed ID: 27168916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.