These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 26785905)
1. Interactions between DNA and Gemini surfactant: impact on gene therapy: part I. Ahmed T; Kamel AO; Wettig SD Nanomedicine (Lond); 2016 Feb; 11(3):289-306. PubMed ID: 26785905 [TBL] [Abstract][Full Text] [Related]
2. Interactions between DNA and gemini surfactant: impact on gene therapy: part II. Ahmed T; Kamel AO; Wettig SD Nanomedicine (Lond); 2016 Feb; 11(4):403-20. PubMed ID: 26784450 [TBL] [Abstract][Full Text] [Related]
3. The influence of novel gemini surfactants containing cycloalkyl side-chains on the structural phases of DNA in solution. Pietralik Z; Kumita JR; Dobson CM; Kozak M Colloids Surf B Biointerfaces; 2015 Jul; 131():83-92. PubMed ID: 25969417 [TBL] [Abstract][Full Text] [Related]
4. Development of lyophilized gemini surfactant-based gene delivery systems: influence of lyophilization on the structure, activity and stability of the lipoplexes. Mohammed-Saeid W; Michel D; El-Aneed A; Verrall RE; Low NH; Badea I J Pharm Pharm Sci; 2012; 15(4):548-67. PubMed ID: 23106958 [TBL] [Abstract][Full Text] [Related]
5. New serine-derived gemini surfactants as gene delivery systems. Cardoso AM; Morais CM; Cruz AR; Silva SG; do Vale ML; Marques EF; de Lima MC; Jurado AS Eur J Pharm Biopharm; 2015 Jan; 89():347-56. PubMed ID: 25513958 [TBL] [Abstract][Full Text] [Related]
6. How does the spacer length of cationic gemini lipids influence the lipoplex formation with plasmid DNA? Physicochemical and biochemical characterizations and their relevance in gene therapy. Muñoz-Úbeda M; Misra SK; Barrán-Berdón AL; Datta S; Aicart-Ramos C; Castro-Hartmann P; Kondaiah P; Junquera E; Bhattacharya S; Aicart E Biomacromolecules; 2012 Dec; 13(12):3926-37. PubMed ID: 23130552 [TBL] [Abstract][Full Text] [Related]
7. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties. Sharma VD; Lees J; Hoffman NE; Brailoiu E; Madesh M; Wunder SL; Ilies MA Mol Pharm; 2014 Feb; 11(2):545-59. PubMed ID: 24377350 [TBL] [Abstract][Full Text] [Related]
8. Bis-quaternary gemini surfactants as components of nonviral gene delivery systems: a comprehensive study from physicochemical properties to membrane interactions. Cardoso AM; Morais CM; Silva SG; Marques EF; de Lima MC; Jurado MA Int J Pharm; 2014 Oct; 474(1-2):57-69. PubMed ID: 25111434 [TBL] [Abstract][Full Text] [Related]
9. Design and Evaluation of RGD-Modified Gemini Surfactant-Based Lipoplexes for Targeted Gene Therapy in Melanoma Model. Mohammed-Saeid W; Chitanda J; Al-Dulaymi M; Verrall R; Badea I Pharm Res; 2017 Sep; 34(9):1886-1896. PubMed ID: 28643235 [TBL] [Abstract][Full Text] [Related]
10. Compaction of DNA by gemini surfactants: effects of surfactant architecture. Karlsson L; van Eijk MC; Söderman O J Colloid Interface Sci; 2002 Aug; 252(2):290-6. PubMed ID: 16290792 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and aggregation properties of dissymmetric phytanyl-gemini surfactants for use as improved DNA transfection vectors. Wang H; Wettig SD Phys Chem Chem Phys; 2011 Jan; 13(2):637-42. PubMed ID: 20981388 [TBL] [Abstract][Full Text] [Related]
13. Structural and transfection properties of amine-substituted gemini surfactant-based nanoparticles. Wettig SD; Badea I; Donkuru M; Verrall RE; Foldvari M J Gene Med; 2007 Aug; 9(8):649-58. PubMed ID: 17654656 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles. Singh J; Michel D; Chitanda JM; Verrall RE; Badea I J Nanobiotechnology; 2012 Feb; 10():7. PubMed ID: 22296763 [TBL] [Abstract][Full Text] [Related]
16. Gemini surfactant dimethylene-1,2-bis(tetradecyldimethylammonium bromide)-based gene vectors: a biophysical approach to transfection efficiency. Cardoso AM; Faneca H; Almeida JA; Pais AA; Marques EF; de Lima MC; Jurado AS Biochim Biophys Acta; 2011 Jan; 1808(1):341-51. PubMed ID: 20937247 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, characterization, and use of asymmetric pyrenyl-gemini surfactants as emissive components in DNA-lipoplex systems. Wang C; Wettig SD; Foldvari M; Verrall RE Langmuir; 2007 Aug; 23(17):8995-9001. PubMed ID: 17637001 [TBL] [Abstract][Full Text] [Related]
18. Lipoplexes formed from sugar-based gemini surfactants undergo a lamellar-to-micellar phase transition at acidic pH. Evidence for a non-inverted membrane-destabilizing hexagonal phase of lipoplexes. Wasungu L; Stuart MC; Scarzello M; Engberts JB; Hoekstra D Biochim Biophys Acta; 2006 Oct; 1758(10):1677-84. PubMed ID: 16930530 [TBL] [Abstract][Full Text] [Related]
19. Physical Characterization of Gemini Surfactant-Based Synthetic Vectors for the Delivery of Linear Covalently Closed (LCC) DNA Ministrings. Sum CH; Nafissi N; Slavcev RA; Wettig S PLoS One; 2015; 10(11):e0142875. PubMed ID: 26561857 [TBL] [Abstract][Full Text] [Related]
20. Peptide-Modified Gemini Surfactants: Preparation and Characterization for Gene Delivery. Al-Dulaymi M; Mohammed-Saeid W; El-Aneed A; Badea I Methods Mol Biol; 2019; 2000():203-225. PubMed ID: 31148017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]