These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 26786892)
1. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP. Miner KD; Kurtz DM Biochemistry; 2016 Feb; 55(6):970-9. PubMed ID: 26786892 [TBL] [Abstract][Full Text] [Related]
2. The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases. Lovering AL; Capeness MJ; Lambert C; Hobley L; Sockett RE mBio; 2011; 2(5):. PubMed ID: 21990613 [TBL] [Abstract][Full Text] [Related]
3. An HD-GYP cyclic di-guanosine monophosphate phosphodiesterase with a non-heme diiron-carboxylate active site. Miner KD; Klose KE; Kurtz DM Biochemistry; 2013 Aug; 52(32):5329-31. PubMed ID: 23883166 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre. Bellini D; Caly DL; McCarthy Y; Bumann M; An SQ; Dow JM; Ryan RP; Walsh MA Mol Microbiol; 2014 Jan; 91(1):26-38. PubMed ID: 24176013 [TBL] [Abstract][Full Text] [Related]
5. Finally! The structural secrets of a HD-GYP phosphodiesterase revealed. Wigren E; Liang ZX; Römling U Mol Microbiol; 2014 Jan; 91(1):1-5. PubMed ID: 24236493 [TBL] [Abstract][Full Text] [Related]
6. Structural basis of functional diversification of the HD-GYP domain revealed by the Pseudomonas aeruginosa PA4781 protein, which displays an unselective bimetallic binding site. Rinaldo S; Paiardini A; Stelitano V; Brunotti P; Cervoni L; Fernicola S; Protano C; Vitali M; Cutruzzolà F; Giardina G J Bacteriol; 2015 Apr; 197(8):1525-35. PubMed ID: 25691523 [TBL] [Abstract][Full Text] [Related]
7. Identification and Characterization of a Redox Sensor Phosphodiesterase from Kitanishi K; Igarashi J; Matsuoka A; Unno M Biochemistry; 2020 Mar; 59(8):983-991. PubMed ID: 32045213 [TBL] [Abstract][Full Text] [Related]
8. A systematic analysis of the in vitro and in vivo functions of the HD-GYP domain proteins of Vibrio cholerae. McKee RW; Kariisa A; Mudrak B; Whitaker C; Tamayo R BMC Microbiol; 2014 Oct; 14():272. PubMed ID: 25343965 [TBL] [Abstract][Full Text] [Related]
9. Formation and dimerization of the phosphodiesterase active site of the Pseudomonas aeruginosa MorA, a bi-functional c-di-GMP regulator. Phippen CW; Mikolajek H; Schlaefli HG; Keevil CW; Webb JS; Tews I FEBS Lett; 2014 Dec; 588(24):4631-6. PubMed ID: 25447517 [TBL] [Abstract][Full Text] [Related]
10. The GDP-switched GAF domain of DcpA modulates the concerted synthesis/hydrolysis of c-di-GMP in Chen HJ; Li N; Luo Y; Jiang YL; Zhou CZ; Chen Y; Li Q Biochem J; 2018 Apr; 475(7):1295-1308. PubMed ID: 29555845 [TBL] [Abstract][Full Text] [Related]
11. Sequence Conservation, Domain Architectures, and Phylogenetic Distribution of the HD-GYP Type c-di-GMP Phosphodiesterases. Galperin MY; Chou SH J Bacteriol; 2022 Apr; 204(4):e0056121. PubMed ID: 34928179 [TBL] [Abstract][Full Text] [Related]
12. Escherichia coli K-12 YfgF is an anaerobic cyclic di-GMP phosphodiesterase with roles in cell surface remodelling and the oxidative stress response. Lacey MM; Partridge JD; Green J Microbiology (Reading); 2010 Sep; 156(Pt 9):2873-2886. PubMed ID: 20522491 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. Sultan SZ; Pitzer JE; Boquoi T; Hobbs G; Miller MR; Motaleb MA Infect Immun; 2011 Aug; 79(8):3273-83. PubMed ID: 21670168 [TBL] [Abstract][Full Text] [Related]
14. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family. Sun S; Pandelia ME Biochemistry; 2020 Jun; 59(25):2340-2350. PubMed ID: 32496757 [TBL] [Abstract][Full Text] [Related]
15. C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP phosphodiesterases: analysis of the reaction mechanism and novel roles for pGpG. Stelitano V; Giardina G; Paiardini A; Castiglione N; Cutruzzolà F; Rinaldo S PLoS One; 2013; 8(9):e74920. PubMed ID: 24066157 [TBL] [Abstract][Full Text] [Related]
16. Gas-Selective Catalytic Regulation by a Newly Identified Globin-Coupled Sensor Phosphodiesterase Containing an HD-GYP Domain from the Human Pathogen Kitanishi K; Aoyama N; Shimonaka M Biochemistry; 2024 Feb; 63(4):523-532. PubMed ID: 38264987 [TBL] [Abstract][Full Text] [Related]
17. Sun S; Wang R; Pandelia ME Biochemistry; 2022 Sep; 61(17):1801-1809. PubMed ID: 35901269 [TBL] [Abstract][Full Text] [Related]
18. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Dow JM; Fouhy Y; Lucey JF; Ryan RP Mol Plant Microbe Interact; 2006 Dec; 19(12):1378-84. PubMed ID: 17153922 [TBL] [Abstract][Full Text] [Related]
19. pGpG-signaling regulates virulence and global transcriptomic targets in Kharadi RR; Hsueh BY; Waters CM; Sundin GW bioRxiv; 2024 Jan; ():. PubMed ID: 38260453 [TBL] [Abstract][Full Text] [Related]
20. Tlr0485 is a cAMP-activated c-di-GMP phosphodiesterase in a cyanobacterium Thermosynechococcus. Enomoto G; Kamiya A; Okuda Y; Narikawa R; Ikeuchi M J Gen Appl Microbiol; 2020 Jun; 66(2):147-152. PubMed ID: 32224605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]