BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26787476)

  • 1. Gene expression and adaptive evolution of ZBED1 in the hibernating greater horseshoe bat (Rhinolophus ferrumequinum).
    Xiao Y; Wu Y; Sun K; Wang H; Jiang T; Lin A; Huang X; Yue X; Shi L; Feng J
    J Exp Biol; 2016 Mar; 219(Pt 6):834-43. PubMed ID: 26787476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes.
    Lei M; Dong D; Mu S; Pan YH; Zhang S
    PLoS One; 2014; 9(9):e107746. PubMed ID: 25251558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of peroxisome proliferator-activated receptor alpha to hibernation in bats.
    Han Y; Zheng G; Yang T; Zhang S; Dong D; Pan YH
    BMC Evol Biol; 2015 May; 15():88. PubMed ID: 25980933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening of hibernation-related genes in the brain of Rhinolophus ferrumequinum during hibernation.
    Chen J; Yuan L; Sun M; Zhang L; Zhang S
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Feb; 149(2):388-93. PubMed ID: 18055242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression and functional constraint of PRL-2 in hibernating bat.
    Yuan L; Chen J; Lin B; Zhang J; Zhang S
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Dec; 148(4):375-81. PubMed ID: 17683965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and expression of PDK4, FOXO1A and DYRK1A from the hibernating greater horseshoe bat (Rhinolophus ferrumequinum).
    Chen J; Sun M; Liang B; Xu A; Zhang S; Wu D
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Feb; 146(2):166-71. PubMed ID: 17140834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic changes between the active and torpid states in the greater horseshoe bat (Rhinolophus ferrumequinum).
    Liu S; Wang X; Zhu Y; Guo D; Wang Y; Wang Y
    Comp Biochem Physiol B Biochem Mol Biol; 2023; 265():110829. PubMed ID: 36634815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Up-regulation of a non-kinase activity isoform of Ca(2+)/calmodulin-dependent protein kinase kinase beta1 (CaMKKbeta1) in hibernating bat brain.
    Yuan L; Chen J; Lin B; Liang B; Zhang S; Wu D
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Mar; 146(3):438-44. PubMed ID: 17258919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Expression of Hepatic Genes of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) between the Summer Active and Winter Torpid States.
    Xiao Y; Wu Y; Sun K; Wang H; Zhang B; Song S; Du Z; Jiang T; Shi L; Wang L; Lin A; Yue X; Li C; Chen T; Feng J
    PLoS One; 2015; 10(12):e0145702. PubMed ID: 26698122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of the FK506 binding protein 1B to hibernation in bats.
    Liu D; Zheng S; Zheng G; Lv Q; Shen B; Yuan X; Pan YH
    Cryobiology; 2018 Aug; 83():1-8. PubMed ID: 30056853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats.
    Pan YH; Zhang Y; Cui J; Liu Y; McAllan BM; Liao CC; Zhang S
    PLoS One; 2013; 8(4):e62039. PubMed ID: 23620802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Waking the sleeping dragon: gene expression profiling reveals adaptive strategies of the hibernating reptile Pogona vitticeps.
    Capraro A; O'Meally D; Waters SA; Patel HR; Georges A; Waters PD
    BMC Genomics; 2019 Jun; 20(1):460. PubMed ID: 31170930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p38 MAPK regulation of transcription factor targets in muscle and heart of the hibernating bat, Myotis lucifugus.
    Eddy SF; Storey KB
    Cell Biochem Funct; 2007; 25(6):759-65. PubMed ID: 17487931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Down but Not Out: The Role of MicroRNAs in Hibernating Bats.
    Yuan L; Geiser F; Lin B; Sun H; Chen J; Zhang S
    PLoS One; 2015; 10(8):e0135064. PubMed ID: 26244645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and expression of microRNA in the brain of hibernating bats, Myotis lucifugus.
    Biggar KK; Storey KB
    Gene; 2014 Jul; 544(1):67-74. PubMed ID: 24768722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urinary creatinine varies with microenvironment and sex in hibernating Greater Horseshoe bats (Rhinolophus ferrumequinum) in Korea.
    Ryu H; Kinoshita K; Joo S; Kim SS
    BMC Ecol Evol; 2021 May; 21(1):77. PubMed ID: 33947328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete mitochondrial genomes of two subspecies (Rhinolophus ferrumequinum nippon and Rhinolophus ferrumequinum tragatus) of the greater horseshoe bat (Chiroptera: Rhinolophidae).
    Xiao Y; Sun K; Feng J
    Mitochondrial DNA A DNA Mapp Seq Anal; 2017 Jan; 28(1):96-97. PubMed ID: 26678669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal dynamics of the bat wing transcriptome: Insight into gene-expression changes that enable protection against pathogen.
    Li A; Leng H; Li Z; Jin L; Sun K; Feng J
    Virulence; 2023 Dec; 14(1):2156185. PubMed ID: 36599840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hibernation telomere dynamics in a shifting climate: insights from wild greater horseshoe bats.
    Power ML; Ransome RD; Riquier S; Romaine L; Jones G; Teeling EC
    Proc Biol Sci; 2023 Oct; 290(2008):20231589. PubMed ID: 37817598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of selected mitochondrial genes in hibernating little brown bats, Myotis lucifugus.
    Eddy SF; Morin P; Storey KB
    J Exp Zool A Comp Exp Biol; 2006 Aug; 305(8):620-30. PubMed ID: 16721807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.