These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 26787848)
1. Folding and assembly of the large molecular machine Hsp90 studied in single-molecule experiments. Jahn M; Buchner J; Hugel T; Rief M Proc Natl Acad Sci U S A; 2016 Feb; 113(5):1232-7. PubMed ID: 26787848 [TBL] [Abstract][Full Text] [Related]
2. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Harris SF; Shiau AK; Agard DA Structure; 2004 Jun; 12(6):1087-97. PubMed ID: 15274928 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide-Dependent Dimer Association and Dissociation of the Chaperone Hsp90. Tych KM; Jahn M; Gegenfurtner F; Hechtl VK; Buchner J; Hugel T; Rief M J Phys Chem B; 2018 Dec; 122(49):11373-11380. PubMed ID: 30179494 [TBL] [Abstract][Full Text] [Related]
4. Structural studies on the co-chaperone Hop and its complexes with Hsp90. Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364 [TBL] [Abstract][Full Text] [Related]
5. Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37. Roiniotis J; Masendycz P; Ho S; Scholz GM Biochemistry; 2005 May; 44(17):6662-9. PubMed ID: 15850399 [TBL] [Abstract][Full Text] [Related]
6. Energetic dependencies dictate folding mechanism in a complex protein. Liu K; Chen X; Kaiser CM Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25641-25648. PubMed ID: 31776255 [TBL] [Abstract][Full Text] [Related]
7. Fast Protein Translation Can Promote Co- and Posttranslational Folding of Misfolding-Prone Proteins. Trovato F; O'Brien EP Biophys J; 2017 May; 112(9):1807-1819. PubMed ID: 28494952 [TBL] [Abstract][Full Text] [Related]
8. Lattice simulations of cotranslational folding of single domain proteins. Wang P; Klimov DK Proteins; 2008 Feb; 70(3):925-37. PubMed ID: 17803235 [TBL] [Abstract][Full Text] [Related]
9. Factors governing the foldability of proteins. Klimov DK; Thirumalai D Proteins; 1996 Dec; 26(4):411-41. PubMed ID: 8990496 [TBL] [Abstract][Full Text] [Related]
10. Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties. Veitshans T; Klimov D; Thirumalai D Fold Des; 1997; 2(1):1-22. PubMed ID: 9080195 [TBL] [Abstract][Full Text] [Related]
11. Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps. Bitran A; Jacobs WM; Zhai X; Shakhnovich E Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1485-1495. PubMed ID: 31911473 [TBL] [Abstract][Full Text] [Related]
12. Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation. Reddy PS; Thirulogachandar V; Vaishnavi CS; Aakrati A; Sopory SK; Reddy MK Gene; 2011 Mar; 474(1-2):29-38. PubMed ID: 21185362 [TBL] [Abstract][Full Text] [Related]
13. Chain length dependence of apomyoglobin folding: structural evolution from misfolded sheets to native helices. Chow CC; Chow C; Raghunathan V; Huppert TJ; Kimball EB; Cavagnero S Biochemistry; 2003 Jun; 42(23):7090-9. PubMed ID: 12795605 [TBL] [Abstract][Full Text] [Related]
14. Protein misfolding: optional barriers, misfolded intermediates, and pathway heterogeneity. Krishna MM; Lin Y; Englander SW J Mol Biol; 2004 Oct; 343(4):1095-109. PubMed ID: 15476824 [TBL] [Abstract][Full Text] [Related]
15. Protein misfolding occurs by slow diffusion across multiple barriers in a rough energy landscape. Yu H; Dee DR; Liu X; Brigley AM; Sosova I; Woodside MT Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8308-13. PubMed ID: 26109573 [TBL] [Abstract][Full Text] [Related]
16. Translation and folding of single proteins in real time. Wruck F; Katranidis A; Nierhaus KH; Büldt G; Hegner M Proc Natl Acad Sci U S A; 2017 May; 114(22):E4399-E4407. PubMed ID: 28507157 [TBL] [Abstract][Full Text] [Related]
17. GroE modulates kinetic partitioning of folding intermediates between alternative states to maximize the yield of biologically active protein. Fedorov AN; Baldwin TO J Mol Biol; 1997 May; 268(4):712-23. PubMed ID: 9175856 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways. Patra AK; Udgaonkar JB Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706 [TBL] [Abstract][Full Text] [Related]
19. Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1. Heidarsson PO; Naqvi MM; Otazo MR; Mossa A; Kragelund BB; Cecconi C Proc Natl Acad Sci U S A; 2014 Sep; 111(36):13069-74. PubMed ID: 25157171 [TBL] [Abstract][Full Text] [Related]
20. Kinetic partitioning mechanism governs the folding of the third FnIII domain of tenascin-C: evidence at the single-molecule level. Peng Q; Fang J; Wang M; Li H J Mol Biol; 2011 Sep; 412(4):698-709. PubMed ID: 21839747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]