These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26787903)

  • 21. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining hydrodynamics and molecular kinetics to predict dewetting between a small bubble and a solid surface.
    Phan CM; Nguyen AV; Evans GM
    J Colloid Interface Sci; 2006 Apr; 296(2):669-76. PubMed ID: 16239010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlocal hydrodynamic influence on the dynamic contact angle: slip models versus experiment.
    Wilson MC; Summers JL; Shikhmurzaev YD; Clarke A; Blake TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041606. PubMed ID: 16711820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boundary streaming with Navier boundary condition.
    Xie JH; Vanneste J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063010. PubMed ID: 25019882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.
    Pan Y; Bhushan B; Zhao X
    Beilstein J Nanotechnol; 2014; 5():1042-65. PubMed ID: 25161839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unified slip boundary condition for fluid flows.
    Thalakkottor JJ; Mohseni K
    Phys Rev E; 2016 Aug; 94(2-1):023113. PubMed ID: 27627398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Slip transition in dynamic wetting for a generalized Navier boundary condition.
    Rougier V; Cellier J; Gomina M; Bréard J
    J Colloid Interface Sci; 2021 Feb; 583():448-458. PubMed ID: 33017692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signatures of slip in dewetting polymer films.
    Peschka D; Haefner S; Marquant L; Jacobs K; Münch A; Wagner B
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9275-9284. PubMed ID: 31004049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel.
    Suciu CV; Iwatsubo T; Yaguchi K; Ikenaga M
    J Colloid Interface Sci; 2005 Mar; 283(1):196-214. PubMed ID: 15694440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrodynamic slip in silicon nanochannels.
    Ramos-Alvarado B; Kumar S; Peterson GP
    Phys Rev E; 2016 Mar; 93(3):033117. PubMed ID: 27078457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of the Relationship between Boundary Slip and Nanobubbles on a Smooth Hydrophobic Surface.
    Li D; Jing D; Pan Y; Bhushan B; Zhao X
    Langmuir; 2016 Nov; 32(43):11287-11294. PubMed ID: 27684436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the oscillatory wetting-dewetting motion of a volatile drop during the deposition of polymer on a solid substrate.
    Zigelman A; Abo Jabal M; Manor O
    Soft Matter; 2019 Apr; 15(17):3580-3587. PubMed ID: 30964143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liquid-Liquid Flow at Nanoscale: Slip and Hydrodynamic Boundary Conditions.
    Hilaire L; Siboulet B; Charton S; Dufrêche JF
    Langmuir; 2023 Feb; 39(6):2260-2273. PubMed ID: 36719852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From local to hydrodynamic friction in Brownian motion: A multiparticle collision dynamics simulation study.
    Theers M; Westphal E; Gompper G; Winkler RG
    Phys Rev E; 2016 Mar; 93(3):032604. PubMed ID: 27078411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can hydrodynamic contact line paradox be solved by evaporation-condensation?
    Janeček V; Doumenc F; Guerrier B; Nikolayev VS
    J Colloid Interface Sci; 2015 Dec; 460():329-38. PubMed ID: 26348659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Universal contact-line dynamics at the nanoscale.
    Rivetti M; Salez T; Benzaquen M; Raphaël E; Bäumchen O
    Soft Matter; 2015 Dec; 11(48):9247-53. PubMed ID: 26481774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stokes flow inside an evaporating liquid line for any contact angle.
    Petsi AJ; Burganos VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036324. PubMed ID: 18851160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apparent slip over a solid-liquid interface with a no-slip boundary condition.
    Zhang J; Kwok DY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056701. PubMed ID: 15600790
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Viscoelasticity Enhances Nanometer-Scale Slip in Gigahertz-Frequency Liquid Flows.
    Chakraborty D; Uthe B; Malachosky EW; Pelton M; Sader JE
    J Phys Chem Lett; 2021 Apr; 12(13):3449-3455. PubMed ID: 33789041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.