BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26788219)

  • 1. Putative cancer-initiating stem cells in cell culture models for molecular subtypes of clinical breast cancer.
    Telang N
    Oncol Lett; 2015 Dec; 10(6):3840-3846. PubMed ID: 26788219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-proliferative and pro-apoptotic effects of rosemary and constituent terpenoids in a model for the HER-2-enriched molecular subtype of clinical breast cancer.
    Telang N
    Oncol Lett; 2018 Oct; 16(4):5489-5497. PubMed ID: 30214619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth inhibitory efficacy of natural products in a model for triple negative molecular subtype of clinical breast cancer.
    Telang N
    Biomed Rep; 2017 Sep; 7(3):199-204. PubMed ID: 28819559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epithelial cell culture models for the prevention and therapy of clinical breast cancer (Review).
    Telang N; Katdare M
    Oncol Lett; 2012 Apr; 3(4):744-750. PubMed ID: 22740986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolactin hormone exerts anti-tumorigenic effects in HER-2 overexpressing breast cancer cells through regulation of stemness.
    Hachim IY; López-Ozuna VM; Hachim MY; Lebrun JJ; Ali S
    Stem Cell Res; 2019 Oct; 40():101538. PubMed ID: 31450192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Divergent Effects of Ovarian Steroid Hormones in the MCF-7 Model for Luminal A Breast Cancer: Mechanistic Leads for Therapy.
    Telang NT
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem Cell Models for Cancer Therapy.
    Telang N
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell State Transitions and Phenotypic Heterogeneity in Luminal Breast Cancer Implicating MicroRNAs as Potential Regulators.
    Richard V; Nair MG; Jaikumar VS; Jones S; Prabhu JS; Kerin MJ
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells.
    Hu K; Law JH; Fotovati A; Dunn SE
    Breast Cancer Res; 2012 Feb; 14(1):R22. PubMed ID: 22309939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EP300 knockdown reduces cancer stem cell phenotype, tumor growth and metastasis in triple negative breast cancer.
    Ring A; Kaur P; Lang JE
    BMC Cancer; 2020 Nov; 20(1):1076. PubMed ID: 33167919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of Cdk2 kinase activity selectively targets the CD44⁺/CD24⁻/Low stem-like subpopulation and restores chemosensitivity of SUM149PT triple-negative breast cancer cells.
    Opyrchal M; Salisbury JL; Iankov I; Goetz MP; McCubrey J; Gambino MW; Malatino L; Puccia G; Ingle JN; Galanis E; D'Assoro AB
    Int J Oncol; 2014 Sep; 45(3):1193-9. PubMed ID: 24970653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ABCG2, a novel antigen to sort luminal progenitors of BRCA1- breast cancer cells.
    Leccia F; Del Vecchio L; Mariotti E; Di Noto R; Morel AP; Puisieux A; Salvatore F; Ansieau S
    Mol Cancer; 2014 Sep; 13():213. PubMed ID: 25216750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of aberrant proliferation and induction of apoptosis in HER-2/neu oncogene transformed human mammary epithelial cells by N-(4-hydroxyphenyl)retinamide.
    Jinno H; Steiner MG; Mehta RG; Osborne MP; Telang NT
    Carcinogenesis; 1999 Feb; 20(2):229-36. PubMed ID: 10069458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stem Cell Models for Breast and Colon Cancer: Experimental Approach for Drug Discovery.
    Telang NT
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A synthetic triterpenoid CDDO-Im inhibits tumorsphere formation by regulating stem cell signaling pathways in triple-negative breast cancer.
    So JY; Lin JJ; Wahler J; Liby KT; Sporn MB; Suh N
    PLoS One; 2014; 9(9):e107616. PubMed ID: 25229616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunoexpression of claudins 4 and 7 among invasive breast carcinoma subtypes: A large diagnostic study using tissue microarray.
    Logullo AF; Pasini FS; Nonogaki S; Rocha RM; Soares FA; Brentani MM
    Mol Clin Oncol; 2018 Oct; 9(4):377-388. PubMed ID: 30214726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dysregulation of the epigenome in triple-negative breast cancers: basal-like and claudin-low breast cancers express aberrant DNA hypermethylation.
    Roll JD; Rivenbark AG; Sandhu R; Parker JS; Jones WD; Carey LA; Livasy CA; Coleman WB
    Exp Mol Pathol; 2013 Dec; 95(3):276-87. PubMed ID: 24045095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.
    Prat A; Karginova O; Parker JS; Fan C; He X; Bixby L; Harrell JC; Roman E; Adamo B; Troester M; Perou CM
    Breast Cancer Res Treat; 2013 Nov; 142(2):237-55. PubMed ID: 24162158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-inflammatory drug resistance selects putative cancer stem cells in a cellular model for genetically predisposed colon cancer.
    Telang N
    Oncol Lett; 2018 Jan; 15(1):642-648. PubMed ID: 29434827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation.
    Louie E; Nik S; Chen JS; Schmidt M; Song B; Pacson C; Chen XF; Park S; Ju J; Chen EI
    Breast Cancer Res; 2010; 12(6):R94. PubMed ID: 21067584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.