These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 26788252)

  • 1. Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective.
    Mello T; Zanieri F; Ceni E; Galli A
    Oxid Med Cell Longev; 2016; 2016():8327410. PubMed ID: 26788252
    [TBL] [Abstract][Full Text] [Related]  

  • 2.  Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside.
    Arauz J; Ramos-Tovar E; Muriel P
    Ann Hepatol; 2016; 15(2):160-73. PubMed ID: 26845593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular Redox Signaling.
    Zhu L; Lu Y; Zhang J; Hu Q
    Adv Exp Med Biol; 2017; 967():385-398. PubMed ID: 29047101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease.
    Fransen M; Nordgren M; Wang B; Apanasets O
    Biochim Biophys Acta; 2012 Sep; 1822(9):1363-73. PubMed ID: 22178243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the Mitochondrial Apoptotic Pathway Produces Reactive Oxygen Species and Oxidative Damage in Hepatocytes That Contribute to Liver Tumorigenesis.
    Hikita H; Kodama T; Tanaka S; Saito Y; Nozaki Y; Nakabori T; Shimizu S; Hayashi Y; Li W; Shigekawa M; Sakamori R; Miyagi T; Hiramatsu N; Tatsumi T; Takehara T
    Cancer Prev Res (Phila); 2015 Aug; 8(8):693-701. PubMed ID: 26038117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of oxidative stress in the metabolic syndrome.
    Whaley-Connell A; McCullough PA; Sowers JR
    Rev Cardiovasc Med; 2011; 12(1):21-9. PubMed ID: 21546885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae.
    Ayer A; Gourlay CW; Dawes IW
    FEMS Yeast Res; 2014 Feb; 14(1):60-72. PubMed ID: 24164795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organelle redox autonomy during environmental stress.
    Bratt A; Rosenwasser S; Meyer A; Fluhr R
    Plant Cell Environ; 2016 Sep; 39(9):1909-19. PubMed ID: 27037976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The p66Shc protein controls redox signaling and oxidation-dependent DNA damage in human liver cells.
    Perrini S; Tortosa F; Natalicchio A; Pacelli C; Cignarelli A; Palmieri VO; Caccioppoli C; De Stefano F; Porro S; Leonardini A; Ficarella R; De Fazio M; Cocco T; Puglisi F; Laviola L; Palasciano G; Giorgino F
    Am J Physiol Gastrointest Liver Physiol; 2015 Nov; 309(10):G826-40. PubMed ID: 26336926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of subcellular organelles in inflammatory pain-induced oxidative stress and apoptosis in the rat hepatocytes.
    Rezaei M; Rasekh HR; Ahmadiani A; Pourahmad J
    Arch Iran Med; 2008 Jul; 11(4):407-17. PubMed ID: 18588373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment.
    Haddad JJ
    Int Immunopharmacol; 2004 Apr; 4(4):475-93. PubMed ID: 15099526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding Cellular Redox Homeostasis: A Challenge for Precision Medicine.
    Tretter V; Hochreiter B; Zach ML; Krenn K; Klein KU
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction and regulation of hepatocyte apoptosis by oxidative stress.
    Czaja MJ
    Antioxid Redox Signal; 2002 Oct; 4(5):759-67. PubMed ID: 12470503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods to detect hydrogen peroxide in living cells: Possibilities and pitfalls.
    Grisham MB
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Aug; 165(4):429-38. PubMed ID: 23396306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress as a mechanism of teratogenesis.
    Hansen JM
    Birth Defects Res C Embryo Today; 2006 Dec; 78(4):293-307. PubMed ID: 17315243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.
    Valko M; Jomova K; Rhodes CJ; Kuča K; Musílek K
    Arch Toxicol; 2016 Jan; 90(1):1-37. PubMed ID: 26343967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of redox homeostasis altered by CuNPs in H4IIE liver cells does not reduce the cytotoxic effects of these NPs: an investigation using aryl hydrocarbon receptor (AhR) dependent antioxidant activity.
    Connolly M; Fernández-Cruz ML; Navas JM
    Chem Biol Interact; 2015 Feb; 228():57-68. PubMed ID: 25617484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative Stress-Mediated Skeletal Muscle Degeneration: Molecules, Mechanisms, and Therapies.
    Choi MH; Ow JR; Yang ND; Taneja R
    Oxid Med Cell Longev; 2016; 2016():6842568. PubMed ID: 26798425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual roles of vascular-derived reactive oxygen species--with a special reference to hydrogen peroxide and cyclophilin A.
    Satoh K; Godo S; Saito H; Enkhjargal B; Shimokawa H
    J Mol Cell Cardiol; 2014 Aug; 73():50-6. PubMed ID: 24406688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.