These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 26788511)

  • 1. Gene Expressing and sRNA Sequencing Show That Gene Differentiation Associates with a Yellow Acer palmatum Mutant Leaf in Different Light Conditions.
    Li SS; Li QZ; Rong LP; Tang L; Zhang B
    Biomed Res Int; 2015; 2015():843470. PubMed ID: 26788511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome profiling provides insights into leaf color changes in two Acer palmatum genotypes.
    Zhu L; Wen J; Ma Q; Yan K; Du Y; Chen Z; Lu X; Ren J; Wang Y; Li S; Li Q
    BMC Plant Biol; 2022 Dec; 22(1):589. PubMed ID: 36526968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis based on a combination of sequencing platforms provides insights into leaf pigmentation in Acer rubrum.
    Chen Z; Lu X; Xuan Y; Tang F; Wang J; Shi D; Fu S; Ren J
    BMC Plant Biol; 2019 Jun; 19(1):240. PubMed ID: 31170934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal-level genome and multi-omics dataset provides new insights into leaf pigmentation in Acer palmatum.
    Chen Z; Lu X; Zhu L; Afzal SF; Zhou J; Ma Q; Li Q; Chen J; Ren J
    Int J Biol Macromol; 2023 Feb; 227():93-104. PubMed ID: 36470439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes.
    Rong L; Li Q; Li S; Tang L; Wen J
    Mol Genet Genomics; 2016 Apr; 291(2):575-86. PubMed ID: 26475609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory mechanisms of leaf color change in
    Ge W; Wang X; Li J; Zhu W; Cui J; Zhang K
    Genome; 2019 Dec; 62(12):793-805. PubMed ID: 31491334
    [No Abstract]   [Full Text] [Related]  

  • 7. Characterization and Complementation of a Chlorophyll-Less Dominant Mutant GL1 in Lagerstroemia indica.
    Wang S; Wang P; Gao L; Yang R; Li L; Zhang E; Wang Q; Li Y; Yin Z
    DNA Cell Biol; 2017 May; 36(5):354-366. PubMed ID: 28277741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo transcriptome revealed genes involved in anthocyanin biosynthesis, transport, and regulation in a mutant of Acer pseudosieboldianum.
    Li JL; Weng Z; Li XY; Xu B; Gao YF; Rong LP
    BMC Genomics; 2022 Aug; 23(1):567. PubMed ID: 35941547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined metabolome and transcriptome analyses of photosynthetic pigments in red maple.
    Lu X; Chen Z; Gao J; Fu S; Hu H; Ren J
    Plant Physiol Biochem; 2020 Sep; 154():476-490. PubMed ID: 32663649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf Coloration in
    Sun S; Zhang Q; Yu Y; Feng J; Liu C; Yang J
    Plants (Basel); 2022 Mar; 11(6):. PubMed ID: 35336641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing.
    Paul S; Kundu A; Pal A
    J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA expression analysis of rosette and folding leaves in Chinese cabbage using high-throughput Solexa sequencing.
    Wang F; Li H; Zhang Y; Li J; Li L; Liu L; Wang L; Wang C; Gao J
    Gene; 2013 Dec; 532(2):222-9. PubMed ID: 24055726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small RNA sequencing identifies miRNA roles in ovule and fibre development.
    Xie F; Jones DC; Wang Q; Sun R; Zhang B
    Plant Biotechnol J; 2015 Apr; 13(3):355-69. PubMed ID: 25572837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genes involved in spontaneous leaf color variation in Pseudosasa japonica.
    Yang HY; Xia XW; Fang W; Fu Y; An MM; Zhou MB
    Genet Mol Res; 2015 Oct; 14(4):11827-40. PubMed ID: 26436507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light compensation points in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2.
    Kitao M; Hida T; Eguchi N; Tobita H; Utsugi H; Uemura A; Kitaoka S; Koike T
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():22-7. PubMed ID: 26404633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis reveals dynamic changes in expression of microRNAs during vascular cambium development in Chinese fir, Cunninghamia lanceolata.
    Qiu Z; Li X; Zhao Y; Zhang M; Wan Y; Cao D; Lu S; Lin J
    J Exp Bot; 2015 Jun; 66(11):3041-54. PubMed ID: 25795740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acclimation of photosynthesis to high irradiance in rice: gene expression and interactions with leaf development.
    Murchie EH; Hubbart S; Peng S; Horton P
    J Exp Bot; 2005 Jan; 56(411):449-60. PubMed ID: 15647315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating transcriptomic and metabolomic analysis of hormone pathways in Acer rubrum during developmental leaf senescence.
    Zhu C; Xiaoyu L; Junlan G; Yun X; Jie R
    BMC Plant Biol; 2020 Sep; 20(1):410. PubMed ID: 32883206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing.
    Sun Z; He Y; Li J; Wang X; Chen J
    Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and Characterization of MicroRNAs in Ginkgo biloba var. epiphylla Mak.
    Zhang Q; Li J; Sang Y; Xing S; Wu Q; Liu X
    PLoS One; 2015; 10(5):e0127184. PubMed ID: 25978425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.