These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 26789093)

  • 1. Effects of tempol on altered metabolism and renal vascular responsiveness in fructose-fed rats.
    Abdulla MH; Sattar MA; Johns EJ
    Appl Physiol Nutr Metab; 2016 Feb; 41(2):210-8. PubMed ID: 26789093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of tempol on altered angiotensin II and acetylcholine-mediated vascular responses in thoracic aorta isolated from rats with insulin resistance.
    Viswanad B; Srinivasan K; Kaul CL; Ramarao P
    Pharmacol Res; 2006 Mar; 53(3):209-15. PubMed ID: 16412660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of tempol on renal function and hemodynamics in cyclosporine-induced renal insufficiency rats.
    Chia TY; Sattar MA; Abdulla MH; Rathore HA; Ahmad Fu; Kaur G; Abdullah NA; Johns EJ
    Ren Fail; 2013 Aug; 35(7):978-88. PubMed ID: 23822648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-fructose feeding impacts on the adrenergic control of renal haemodynamics in the rat.
    Abdulla MH; Sattar MA; Johns EJ; Abdullah NA; Hye Khan MA; Rathore HA
    Br J Nutr; 2012 Jan; 107(2):218-28. PubMed ID: 21733307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide dismustase mimetic tempol decreases blood pressure by increasing renal medullary blood flow in hyperinsulinemic-hypertensive rats.
    Onuma S; Nakanishi K
    Metabolism; 2004 Oct; 53(10):1305-8. PubMed ID: 15375786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tempol selectively attenuates angiotensin II evoked vasoconstrictor responses in spontaneously hypertensive rats.
    Shastri S; Gopalakrishnan V; Poduri R; Di Wang H
    J Hypertens; 2002 Jul; 20(7):1381-91. PubMed ID: 12131535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of losartan and carvedilol on renal haemodynamics and altered metabolism in fructose-fed Sprague-Dawley rats.
    Abdulla MH; Sattar MA; Abdullah NA; Johns EJ
    J Physiol Biochem; 2012 Sep; 68(3):353-63. PubMed ID: 22281695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of α1B-adrenoceptor subtype in the renal vasculature of fructose-fed Sprague-Dawley rats.
    Abdulla MH; Sattar MA; Abdullah NA; Hye Khan MA; Anand Swarup KR; Johns EJ
    Eur J Nutr; 2011 Jun; 50(4):251-60. PubMed ID: 20882287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of high-fructose intake on the vasopressor response to angiotensin II and adrenergic agonists in Sprague-Dawley rats.
    Abdulla MH; Sattar MA; Abdullah NA; Johns EJ
    Pak J Pharm Sci; 2013 Jul; 26(4):727-32. PubMed ID: 23811449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NO-independent mechanism mediates tempol-induced renal vasodilation in SHR.
    de Richelieu LT; Sorensen CM; Holstein-Rathlou NH; Salomonsson M
    Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1227-34. PubMed ID: 16033921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ROS during the acute phase of Ang II hypertension participates in cardiovascular MAPK activation but not vasoconstriction.
    Zhang GX; Kimura S; Nishiyama A; Shokoji T; Rahman M; Abe Y
    Hypertension; 2004 Jan; 43(1):117-24. PubMed ID: 14638624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of biphasic effect on Na/K-ATPase activity by angiotensin II involves defective angiotensin type 1 receptor-nitric oxide signaling.
    Banday AA; Lokhandwala MF
    Hypertension; 2008 Dec; 52(6):1099-105. PubMed ID: 18955661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the role of α1A-adrenoceptor subtype in the control of renal haemodynamics in fructose-fed Sprague-Dawley rat.
    Abdulla MH; Sattar MA; Johns EJ; Abdullah NA; Khan MA
    Eur J Nutr; 2011 Dec; 50(8):689-97. PubMed ID: 21373947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of losartan and carvedilol on vasopressor responses to adrenergic agonists and angiotensin II in the systemic circulation of Sprague Dawley rats.
    Abdulla MH; Sattar MA; Abdullah NA; Khan MA; Anand Swarup KR; Johns EJ
    Auton Autacoid Pharmacol; 2011; 31(1-2):13-20. PubMed ID: 21166975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin II-stimulated proximal nephron superoxide production and fructose-induced salt-sensitive hypertension.
    Forester BR; Brostek A; Schuhler B; Gonzalez-Vicente A; Garvin JL
    Am J Physiol Renal Physiol; 2024 Feb; 326(2):F249-F256. PubMed ID: 38059297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central Tempol alters basal sympathetic nerve discharge and attenuates sympathetic excitation to central ANG II.
    Lu N; Helwig BG; Fels RJ; Parimi S; Kenney MJ
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2626-33. PubMed ID: 15284074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal intramedullary infusion of tempol normalizes the blood pressure response to intrarenal blockade of heme oxygenase-1 in angiotensin II-dependent hypertension.
    Stec DE; Juncos LA; Granger JP
    J Am Soc Hypertens; 2016 Apr; 10(4):346-51. PubMed ID: 26922123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide mediates acute renal vasoconstriction produced by angiotensin II and catecholamines by a mechanism independent of nitric oxide.
    Just A; Olson AJ; Whitten CL; Arendshorst WJ
    Am J Physiol Heart Circ Physiol; 2007 Jan; 292(1):H83-92. PubMed ID: 16951043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent transition of tempol-sensitive reduction of blood pressure in angiotensin II-induced hypertension.
    Kimura S; Zhang GX; Nagai Y; Miyata K; Nishiyama A; Shokoji T; Yao L; Fan YY; Rahman M; Fujisawa Y; Miyatake A; Abe Y
    J Hypertens; 2004 Nov; 22(11):2161-8. PubMed ID: 15480101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced superoxide generation modulates renal function in ANG II-induced hypertensive rats.
    Kopkan L; Castillo A; Navar LG; Majid DS
    Am J Physiol Renal Physiol; 2006 Jan; 290(1):F80-6. PubMed ID: 16106039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.