These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
946 related articles for article (PubMed ID: 26789369)
1. Suitability of marginal biomass-derived biochars for soil amendment. Buss W; Graham MC; Shepherd JG; Mašek O Sci Total Environ; 2016 Mar; 547():314-322. PubMed ID: 26789369 [TBL] [Abstract][Full Text] [Related]
2. Risks and benefits of marginal biomass-derived biochars for plant growth. Buss W; Graham MC; Shepherd JG; Mašek O Sci Total Environ; 2016 Nov; 569-570():496-506. PubMed ID: 27362631 [TBL] [Abstract][Full Text] [Related]
3. Soil application of biochar produced from biomass grown on trace element contaminated land. Evangelou MWH; Brem A; Ugolini F; Abiven S; Schulin R J Environ Manage; 2014 Dec; 146():100-106. PubMed ID: 25163600 [TBL] [Abstract][Full Text] [Related]
4. Bioavailability of phosphorus, other nutrients and potentially toxic elements from marginal biomass-derived biochar assessed in barley (Hordeum vulgare) growth experiments. Shepherd JG; Buss W; Sohi SP; Heal KV Sci Total Environ; 2017 Apr; 584-585():448-457. PubMed ID: 28131454 [TBL] [Abstract][Full Text] [Related]
5. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Meng J; Tao M; Wang L; Liu X; Xu J Sci Total Environ; 2018 Aug; 633():300-307. PubMed ID: 29574374 [TBL] [Abstract][Full Text] [Related]
6. Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil. Al-Wabel MI; Usman ARA; Al-Farraj AS; Ok YS; Abduljabbar A; Al-Faraj AI; Sallam AS Environ Geochem Health; 2019 Aug; 41(4):1705-1722. PubMed ID: 28424945 [TBL] [Abstract][Full Text] [Related]
7. Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L. Ibrahim M; Li G; Khan S; Chi Q; Xu Y; Zhu Y Environ Sci Pollut Res Int; 2017 Aug; 24(24):19524-19534. PubMed ID: 28681292 [TBL] [Abstract][Full Text] [Related]
8. Animal carcass- and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: A trial for reclamation and improvement of degraded soils. Chen H; Yang X; Wang H; Sarkar B; Shaheen SM; Gielen G; Bolan N; Guo J; Che L; Sun H; Rinklebe J J Environ Manage; 2020 May; 261():110246. PubMed ID: 32148312 [TBL] [Abstract][Full Text] [Related]
9. Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthus biochars. Janus A; Pelfrêne A; Heymans S; Deboffe C; Douay F; Waterlot C J Environ Manage; 2015 Oct; 162():275-89. PubMed ID: 26265597 [TBL] [Abstract][Full Text] [Related]
10. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality. Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388 [TBL] [Abstract][Full Text] [Related]
11. Characteristics of biochar and its application in remediation of contaminated soil. Tang J; Zhu W; Kookana R; Katayama A J Biosci Bioeng; 2013 Dec; 116(6):653-9. PubMed ID: 23810668 [TBL] [Abstract][Full Text] [Related]
12. Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash. Lucchini P; Quilliam RS; Deluca TH; Vamerali T; Jones DL Environ Sci Pollut Res Int; 2014 Mar; 21(5):3230-40. PubMed ID: 24217969 [TBL] [Abstract][Full Text] [Related]
13. The improvement of multi-contaminated sandy loam soil chemical and biological properties by the biochar, wood ash, and humic substances amendments. Pukalchik M; Mercl F; Panova M; Břendová K; Terekhova VA; Tlustoš P Environ Pollut; 2017 Oct; 229():516-524. PubMed ID: 28628867 [TBL] [Abstract][Full Text] [Related]
14. Release of soluble elements from biochars derived from various biomass feedstocks. Wu H; Che X; Ding Z; Hu X; Creamer AE; Chen H; Gao B Environ Sci Pollut Res Int; 2016 Jan; 23(2):1905-15. PubMed ID: 26408115 [TBL] [Abstract][Full Text] [Related]
15. Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil. Gusiatin ZM; Kurkowski R; Brym S; Wiśniewski D Environ Sci Pollut Res Int; 2016 Nov; 23(21):21249-21261. PubMed ID: 27495921 [TBL] [Abstract][Full Text] [Related]
16. Kinetic and isothermal adsorption-desorption of PAEs on biochars: effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis. Jing F; Pan M; Chen J Environ Sci Pollut Res Int; 2018 Apr; 25(12):11493-11504. PubMed ID: 29427270 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of chromate reduction in soils by surface modified biochar. Mandal S; Sarkar B; Bolan N; Ok YS; Naidu R J Environ Manage; 2017 Jan; 186(Pt 2):277-284. PubMed ID: 27229360 [TBL] [Abstract][Full Text] [Related]
18. Effect of Fe-functionalized biochar on toxicity of a technosol contaminated by Pb and As: sorption and phytotoxicity tests. Lebrun M; Miard F; Renouard S; Nandillon R; Scippa GS; Morabito D; Bourgerie S Environ Sci Pollut Res Int; 2018 Nov; 25(33):33678-33690. PubMed ID: 30276689 [TBL] [Abstract][Full Text] [Related]
19. Effect of biochars on the bioavailability of cadmium and di-(2-ethylhexyl) phthalate to Brassica chinensis L. in contaminated soils. Chen H; Yang X; Gielen G; Mandal S; Xu S; Guo J; Shaheen SM; Rinklebe J; Che L; Wang H Sci Total Environ; 2019 Aug; 678():43-52. PubMed ID: 31075602 [TBL] [Abstract][Full Text] [Related]
20. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type. Subedi R; Taupe N; Pelissetti S; Petruzzelli L; Bertora C; Leahy JJ; Grignani C J Environ Manage; 2016 Jan; 166():73-83. PubMed ID: 26484602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]