These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26789753)

  • 21. MRCI: a flexible real-time dynamic clamp system for electrophysiology experiments.
    Raikov I; Preyer A; Butera RJ
    J Neurosci Methods; 2004 Jan; 132(2):109-23. PubMed ID: 14706709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrotonic effects on action potential duration in perfused rat hearts.
    Walton RD; Bernus O
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4190-3. PubMed ID: 19964627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements.
    Cuccuru G; Fotia G; Maggio F; Southern J
    Biomed Res Int; 2015; 2015():473279. PubMed ID: 26583112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Introduction to Computational Modeling of Cardiac Electrophysiology and Arrhythmogenicity.
    Mayourian J; Sobie EA; Costa KD
    Methods Mol Biol; 2018; 1816():17-35. PubMed ID: 29987808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using CellML with OpenCMISS to Simulate Multi-Scale Physiology.
    Nickerson DP; Ladd D; Hussan JR; Safaei S; Suresh V; Hunter PJ; Bradley CP
    Front Bioeng Biotechnol; 2014; 2():79. PubMed ID: 25601911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Models of cardiac tissue electrophysiology: progress, challenges and open questions.
    Clayton RH; Bernus O; Cherry EM; Dierckx H; Fenton FH; Mirabella L; Panfilov AV; Sachse FB; Seemann G; Zhang H
    Prog Biophys Mol Biol; 2011 Jan; 104(1-3):22-48. PubMed ID: 20553746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Practical application of CellML 1.1: The integration of new mechanisms into a human ventricular myocyte model.
    Nickerson D; Buist M
    Prog Biophys Mol Biol; 2008 Sep; 98(1):38-51. PubMed ID: 18606438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Web-based tools for quantitative renal physiology.
    Dzodic V; Hervy S; Fritsch D; Khalfallah H; Thereau M; Thomas SR
    Cell Mol Biol (Noisy-le-grand); 2004 Nov; 50(7):795-800. PubMed ID: 15672462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cardiac electrophysiology and tissue structure: bridging the scale gap with a joint measurement and modelling paradigm.
    Trew ML; Caldwell BJ; Sands GB; Hooks DA; Tai DC; Austin TM; LeGrice IJ; Pullan AJ; Smaill BH
    Exp Physiol; 2006 Mar; 91(2):355-70. PubMed ID: 16431935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [A probabilistic model of cardiac electrical activity based on a cellular automata system].
    Alonso Atienza F; Requena Carrión J; García Alberola A; Rojo Alvarez JL; Sánchez Muñoz JJ; Martínez Sánchez J; Valdés Chávarri M
    Rev Esp Cardiol; 2005 Jan; 58(1):41-7. PubMed ID: 15680130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational modeling of cardiac ventricular action potentials in rat and mouse: review.
    Demir SS
    Jpn J Physiol; 2004 Dec; 54(6):523-30. PubMed ID: 15760484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational modeling of cardiac dual calcium-voltage optical mapping.
    Walton RD; Bernus O
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2827-30. PubMed ID: 19964270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the computational complexity of the bidomain and the monodomain models of electrophysiology.
    Sundnes J; Nielsen BF; Mardal KA; Cai X; Lines GT; Tveito A
    Ann Biomed Eng; 2006 Jul; 34(7):1088-97. PubMed ID: 16773461
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parameter identifiability of cardiac ionic models using a novel CellML least squares optimization tool.
    Hui BB; Dokos S; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5307-10. PubMed ID: 18003205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Open source model for generating RR intervals in atrial fibrillation and beyond.
    Lian J; Clifford GD; Müssig D; Lang V
    Biomed Eng Online; 2007 Mar; 6():9. PubMed ID: 17335580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. cellmlmanip and chaste_codegen: automatic CellML to C++ code generation with fixes for singularities and automatically generated Jacobians.
    Hendrix M; Clerx M; Tamuri AU; Keating SM; Johnstone RH; Cooper J; Mirams GR
    Wellcome Open Res; 2021; 6():261. PubMed ID: 35299708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative reconstruction of cardiac electromechanics in human myocardium: assembly of electrophysiologic and tension generation models.
    Sachse FB; Seemann G; Chaisaowong K; Weiss D
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S210-8. PubMed ID: 14760926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational cardiac electrophysiology: implementing mathematical models of cardiomyocytes to simulate action potentials of the heart.
    Bell MM; Cherry EM
    Methods Mol Biol; 2015; 1299():65-74. PubMed ID: 25836575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A human ventricular cell model for investigation of cardiac arrhythmias under hyperkalaemic conditions.
    Carro J; Rodríguez JF; Laguna P; Pueyo E
    Philos Trans A Math Phys Eng Sci; 2011 Nov; 369(1954):4205-32. PubMed ID: 21969673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.
    Beattie KA; Hill AP; Bardenet R; Cui Y; Vandenberg JI; Gavaghan DJ; de Boer TP; Mirams GR
    J Physiol; 2018 May; 596(10):1813-1828. PubMed ID: 29573276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.