These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 26789758)

  • 1. Insights into Unfolded Proteins from the Intrinsic ϕ/ψ Propensities of the AAXAA Host-Guest Series.
    Towse CL; Vymetal J; Vondrasek J; Daggett V
    Biophys J; 2016 Jan; 110(2):348-361. PubMed ID: 26789758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of chirality and steric hindrance on intrinsic backbone conformational propensities: tools for protein design.
    Childers MC; Towse CL; Daggett V
    Protein Eng Des Sel; 2016 Jul; 29(7):271-80. PubMed ID: 27284086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The intrinsic conformational propensities of the 20 naturally occurring amino acids and reflection of these propensities in proteins.
    Beck DA; Alonso DO; Inoyama D; Daggett V
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12259-64. PubMed ID: 18713857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and Energetic Characterization of the Denatured State from the Perspectives of Peptides, the Coil Library, and Intrinsically Disordered Proteins.
    Paiz EA; Lewis KA; Whitten ST
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33530506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Nearest-Neighbor Effect on Random-Coil NMR Chemical Shifts Demonstrated Using a Low-Complexity Amino-Acid Sequence.
    Chen TC; Hsiao CL; Huang SJ; Huang JR
    Protein Pept Lett; 2016; 23(11):967-975. PubMed ID: 27653629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and comparison of the statistical coil states of unfolded and intrinsically disordered proteins from nearest-neighbor corrected conformational propensities of short peptides.
    Schweitzer-Stenner R; Toal SE
    Mol Biosyst; 2016 Oct; 12(11):3294-3306. PubMed ID: 27545097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
    Kragelj J; Ozenne V; Blackledge M; Jensen MR
    Chemphyschem; 2013 Sep; 14(13):3034-45. PubMed ID: 23794453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation.
    Serrano L
    J Mol Biol; 1995 Nov; 254(2):322-33. PubMed ID: 7490751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Observation of the Intrinsic Backbone Torsional Mobility of Disordered Proteins.
    Jain N; Narang D; Bhasne K; Dalal V; Arya S; Bhattacharya M; Mukhopadhyay S
    Biophys J; 2016 Aug; 111(4):768-774. PubMed ID: 27558720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of nearest neighbor effects on backbone torsion angles and NMR scalar coupling constants in disordered proteins.
    Shen Y; Roche J; Grishaev A; Bax A
    Protein Sci; 2018 Jan; 27(1):146-158. PubMed ID: 28884933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic approach to determining unbiased random-coil carbon-13 chemical shift values from the protein chemical shift database.
    Wang L; Eghbalnia HR; Markley JL
    J Biomol NMR; 2006 Jul; 35(3):155-65. PubMed ID: 16799859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random coil chemical shifts for serine, threonine and tyrosine phosphorylation over a broad pH range.
    Hendus-Altenburger R; Fernandes CB; Bugge K; Kunze MBA; Boomsma W; Kragelund BB
    J Biomol NMR; 2019 Dec; 73(12):713-725. PubMed ID: 31598803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neighboring residue effects in terminally blocked dipeptides: implications for residual secondary structures in intrinsically unfolded/disordered proteins.
    Jung YS; Oh KI; Hwang GS; Cho M
    Chirality; 2014 Sep; 26(9):443-52. PubMed ID: 24453185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic Radii of Intrinsically Disordered Proteins Determined from Experimental Polyproline II Propensities.
    Tomasso ME; Tarver MJ; Devarajan D; Whitten ST
    PLoS Comput Biol; 2016 Jan; 12(1):e1004686. PubMed ID: 26727467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy reduction in unfolded peptides (and proteins) due to conformational preferences of amino acid residues.
    Schweitzer-Stenner R; Toal SE
    Phys Chem Chem Phys; 2014 Nov; 16(41):22527-36. PubMed ID: 25227444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pentapeptide GGAGG has PII conformation.
    Ding L; Chen K; Santini PA; Shi Z; Kallenbach NR
    J Am Chem Soc; 2003 Jul; 125(27):8092-3. PubMed ID: 12837065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random coil chemical shifts in acidic 8 M urea: implementation of random coil shift data in NMRView.
    Schwarzinger S; Kroon GJ; Foss TR; Wright PE; Dyson HJ
    J Biomol NMR; 2000 Sep; 18(1):43-8. PubMed ID: 11061227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-specific random coil chemical shifts of intrinsically disordered proteins.
    Tamiola K; Acar B; Mulder FA
    J Am Chem Soc; 2010 Dec; 132(51):18000-3. PubMed ID: 21128621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical coil model of the unfolded state: resolving the reconciliation problem.
    Jha AK; Colubri A; Freed KF; Sosnick TR
    Proc Natl Acad Sci U S A; 2005 Sep; 102(37):13099-104. PubMed ID: 16131545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.