These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Influence of the lipid composition on the kinetics of concerted insertion and folding of melittin in bilayers. Constantinescu I; Lafleur M Biochim Biophys Acta; 2004 Nov; 1667(1):26-37. PubMed ID: 15533303 [TBL] [Abstract][Full Text] [Related]
6. Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Frey S; Tamm LK Biophys J; 1991 Oct; 60(4):922-30. PubMed ID: 1742459 [TBL] [Abstract][Full Text] [Related]
7. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Papo N; Shai Y Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173 [TBL] [Abstract][Full Text] [Related]
8. Lipid Headgroup Charge Controls Melittin Oligomerization in Membranes: Implications in Membrane Lysis. Pal S; Chakraborty H; Chattopadhyay A J Phys Chem B; 2021 Aug; 125(30):8450-8459. PubMed ID: 34254509 [TBL] [Abstract][Full Text] [Related]
9. A comparative study of the action of melittin on sphingomyelin and phosphatidylcholine bilayers. Pott T; Paternostre M; Dufourc EJ Eur Biophys J; 1998; 27(3):237-45. PubMed ID: 9615395 [TBL] [Abstract][Full Text] [Related]
10. Modulation of melittin-induced lysis by surface charge density of membranes. Monette M; Lafleur M Biophys J; 1995 Jan; 68(1):187-95. PubMed ID: 7711241 [TBL] [Abstract][Full Text] [Related]
11. Generalised bilayer perturbation from peptide helix dimerisation at membrane surfaces: vesicle lysis induced by disulphide-dimerised melittin analogues. Takei J; Remenyi A; Dempsey CE FEBS Lett; 1999 Jan; 442(1):11-4. PubMed ID: 9923594 [TBL] [Abstract][Full Text] [Related]
12. Revisiting the Interaction of Melittin with Phospholipid Bilayers: The Effects of Concentration and Ionic Strength. Sabapathy T; Deplazes E; Mancera RL Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31979376 [TBL] [Abstract][Full Text] [Related]
13. Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Allende D; Simon SA; McIntosh TJ Biophys J; 2005 Mar; 88(3):1828-37. PubMed ID: 15596510 [TBL] [Abstract][Full Text] [Related]
15. Orientation and dynamics of melittin in membranes of varying composition utilizing NBD fluorescence. Raghuraman H; Chattopadhyay A Biophys J; 2007 Feb; 92(4):1271-83. PubMed ID: 17114219 [TBL] [Abstract][Full Text] [Related]
16. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. Gurtovenko AA; Vattulainen I J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878 [TBL] [Abstract][Full Text] [Related]
17. A molecular dynamics study of the bee venom melittin in aqueous solution, in methanol, and inserted in a phospholipid bilayer. Glättli A; Chandrasekhar I; van Gunsteren WF Eur Biophys J; 2006 Feb; 35(3):255-67. PubMed ID: 16322979 [TBL] [Abstract][Full Text] [Related]
18. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems. Petelska AD; Naumowicz M; Figaszewski ZA Cell Biochem Biophys; 2006; 44(2):205-11. PubMed ID: 16456222 [TBL] [Abstract][Full Text] [Related]
19. Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. Ghosh AK; Rukmini R; Chattopadhyay A Biochemistry; 1997 Nov; 36(47):14291-305. PubMed ID: 9398147 [TBL] [Abstract][Full Text] [Related]