These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 26789763)

  • 21. The presence of PEG-lipids in liposomes does not reduce melittin binding but decreases melittin-induced leakage.
    Rex S; Bian J; Silvius JR; Lafleur M
    Biochim Biophys Acta; 2002 Feb; 1558(2):211-21. PubMed ID: 11779570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Difference between magainin-2 and melittin assemblies in phosphatidylcholine bilayers: results from coarse-grained simulations.
    Santo KP; Berkowitz ML
    J Phys Chem B; 2012 Mar; 116(9):3021-30. PubMed ID: 22303892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The electrical response of bilayers to the bee venom toxin melittin: evidence for transient bilayer permeabilization.
    Wiedman G; Herman K; Searson P; Wimley WC; Hristova K
    Biochim Biophys Acta; 2013 May; 1828(5):1357-64. PubMed ID: 23384418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for superlattice arrangements in fluid phosphatidylcholine/phosphatidylethanolamine bilayers.
    Cheng KH; Ruonala M; Virtanen J; Somerharju P
    Biophys J; 1997 Oct; 73(4):1967-76. PubMed ID: 9336192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The lytic activity of the bee venom peptide melittin is strongly reduced by the presence of negatively charged phospholipids or chloroplast galactolipids in the membranes of phosphatidylcholine large unilamellar vesicles.
    Hincha DK; Crowe JH
    Biochim Biophys Acta; 1996 Oct; 1284(2):162-70. PubMed ID: 8914580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipid-specific interactions determine the organization and dynamics of membrane-active peptide melittin.
    Deng Z; Lu X; Xu C; Yuan B; Yang K
    Soft Matter; 2020 Apr; 16(14):3498-3504. PubMed ID: 32215386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calorimetric behavior of phosphatidylcholine/phosphatidylethanolamine bilayers is compatible with the superlattice model.
    Cheng KH; Virtanen J; Somerharju P
    J Phys Chem B; 2012 Feb; 116(6):1802-11. PubMed ID: 22251448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes.
    Rai DK; Qian S; Heller WT
    Biochim Biophys Acta; 2016 Nov; 1858(11):2788-2794. PubMed ID: 27526681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane.
    Bernèche S; Nina M; Roux B
    Biophys J; 1998 Oct; 75(4):1603-18. PubMed ID: 9746504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of lipid headgroup composition on the interaction between melittin and lipid bilayers.
    Strömstedt AA; Wessman P; Ringstad L; Edwards K; Malmsten M
    J Colloid Interface Sci; 2007 Jul; 311(1):59-69. PubMed ID: 17383670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cause and effect of melittin-induced pore formation: a computational approach.
    Manna M; Mukhopadhyay C
    Langmuir; 2009 Oct; 25(20):12235-42. PubMed ID: 19754202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of electrostatic interactions in the membrane binding of melittin.
    Hall K; Lee TH; Aguilar MI
    J Mol Recognit; 2011; 24(1):108-18. PubMed ID: 21194121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melittin-lipid bilayer interactions and the role of cholesterol.
    Wessman P; Strömstedt AA; Malmsten M; Edwards K
    Biophys J; 2008 Nov; 95(9):4324-36. PubMed ID: 18658211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of lipid chain unsaturation on membrane-bound melittin: a fluorescence approach.
    Raghuraman H; Chattopadhyay A
    Biochim Biophys Acta; 2004 Oct; 1665(1-2):29-39. PubMed ID: 15471568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple membrane interactions and versatile vesicle deformations elicited by melittin.
    Takahashi T; Nomura F; Yokoyama Y; Tanaka-Takiguchi Y; Homma M; Takiguchi K
    Toxins (Basel); 2013 Apr; 5(4):637-64. PubMed ID: 23594437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures.
    Huster D; Arnold K; Gawrisch K
    Biochemistry; 1998 Dec; 37(49):17299-308. PubMed ID: 9860844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of bee venom toxin melittin with ganglioside GM1 bicelle.
    Khatun UL; Mukhopadhyay C
    Biophys Chem; 2013; 180-181():66-75. PubMed ID: 23850803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phospholipid flip-flop modulated by transmembrane peptides WALP and melittin.
    Anglin TC; Brown KL; Conboy JC
    J Struct Biol; 2009 Oct; 168(1):37-52. PubMed ID: 19508895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A combined X-ray and neutron diffraction study of selectively deuterated melittin in phospholipid bilayers: effect of pH.
    Bradshaw JP; Dempsey CE; Watts A
    Mol Membr Biol; 1994; 11(2):79-86. PubMed ID: 7920866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The interaction of amino-deuteromethylated melittin with phospholipid membranes studied by deuterium NMR.
    Dempsey CE; Cryer GD; Watts A
    FEBS Lett; 1987 Jun; 218(1):173-7. PubMed ID: 3595860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.