These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 26790148)
21. The 184th residue of β-glucosidase Bgl1B plays an important role in glucose tolerance. Liu J; Zhang X; Fang Z; Fang W; Peng H; Xiao Y J Biosci Bioeng; 2011 Nov; 112(5):447-50. PubMed ID: 21856223 [TBL] [Abstract][Full Text] [Related]
22. Purification and biochemical properties of a glucose-stimulated beta-D-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse. Nascimento CV; Souza FH; Masui DC; Leone FA; Peralta RM; Jorge JA; Furriel RP J Microbiol; 2010 Feb; 48(1):53-62. PubMed ID: 20221730 [TBL] [Abstract][Full Text] [Related]
23. Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities. Xue X; Wu Y; Qin X; Ma R; Luo H; Su X; Yao B Microb Cell Fact; 2016 Jul; 15(1):122. PubMed ID: 27400964 [TBL] [Abstract][Full Text] [Related]
24. Heterologous expression and biochemical studies of a thermostable glucose tolerant β-glucosidase from Methylococcus capsulatus (bath strain). Sathe SS; Soni S; Ranvir VP; Choudhari VG; Odaneth AA; Lali AM; Chandrayan SK Int J Biol Macromol; 2017 Sep; 102():805-812. PubMed ID: 28450245 [TBL] [Abstract][Full Text] [Related]
25. Engineering the cytokinin-glucoside specificity of the maize β-D-glucosidase Zm-p60.1 using site-directed random mutagenesis. Filipi T; Mazura P; Janda L; Kiran NS; Brzobohatý B Phytochemistry; 2012 Feb; 74():40-8. PubMed ID: 22079107 [TBL] [Abstract][Full Text] [Related]
26. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases. Treebupachatsakul T; Nakazawa H; Shinbo H; Fujikawa H; Nagaiwa A; Ochiai N; Kawaguchi T; Nikaido M; Totani K; Shioya K; Shida Y; Morikawa Y; Ogasawara W; Okada H J Biosci Bioeng; 2016 Jan; 121(1):27-35. PubMed ID: 26073313 [TBL] [Abstract][Full Text] [Related]
27. Chemical mechanism of beta-glucosidase from Trichoderma reesei QM 9414. pH-dependence of kinetic parameters. de la Mata I; Estrada P; Macarrón R; Dominguez JM; Castillón MP; Acebal C Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):679-82. PubMed ID: 1317163 [TBL] [Abstract][Full Text] [Related]
29. Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1. Hwa KY; Subramani B; Shen ST; Lee YM Enzyme Microb Technol; 2015 Sep; 77():14-20. PubMed ID: 26138395 [TBL] [Abstract][Full Text] [Related]
30. Secretory expression, characterization and docking study of glucose-tolerant β-glucosidase from B. subtilis. Chamoli S; Kumar P; Navani NK; Verma AK Int J Biol Macromol; 2016 Apr; 85():425-33. PubMed ID: 26772920 [TBL] [Abstract][Full Text] [Related]
31. Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Murray P; Aro N; Collins C; Grassick A; Penttilä M; Saloheimo M; Tuohy M Protein Expr Purif; 2004 Dec; 38(2):248-57. PubMed ID: 15555940 [TBL] [Abstract][Full Text] [Related]
32. Enzymatic properties and intracellular localization of the novel Trichoderma reesei beta-glucosidase BGLII (cel1A). Saloheimo M; Kuja-Panula J; Ylösmäki E; Ward M; Penttilä M Appl Environ Microbiol; 2002 Sep; 68(9):4546-53. PubMed ID: 12200312 [TBL] [Abstract][Full Text] [Related]
33. β-Glucosidase from the hyperthermophilic archaeon Thermococcus sp. is a salt-tolerant enzyme that is stabilized by its reaction product glucose. Sinha SK; Datta S Appl Microbiol Biotechnol; 2016 Oct; 100(19):8399-409. PubMed ID: 27198723 [TBL] [Abstract][Full Text] [Related]
34. Improving the cellobiose-hydrolysis activity and glucose-tolerance of a thermostable β-glucosidase through rational design. Liu X; Cao L; Zeng J; Liu Y; Xie W Int J Biol Macromol; 2019 Sep; 136():1052-1059. PubMed ID: 31199970 [TBL] [Abstract][Full Text] [Related]
35. Increased alkali stability in Trichoderma reesei endo-1, 4-beta-xylanase II by site directed mutagenesis. Fenel F; Zitting AJ; Kantelinen A J Biotechnol; 2006 Jan; 121(1):102-7. PubMed ID: 16139382 [TBL] [Abstract][Full Text] [Related]
36. Understanding the glucose tolerance of an archaeon β-glucosidase from Thermococcus sp. Sinha SK; Prakash Reddy K; Datta S Carbohydr Res; 2019 Dec; 486():107835. PubMed ID: 31683072 [TBL] [Abstract][Full Text] [Related]
37. Enhancing the Thermostability of Highly Active and Glucose-Tolerant β-Glucosidase Ks5A7 by Directed Evolution for Good Performance of Three Properties. Cao L; Li S; Huang X; Qin Z; Kong W; Xie W; Liu Y J Agric Food Chem; 2018 Dec; 66(50):13228-13235. PubMed ID: 30488698 [TBL] [Abstract][Full Text] [Related]
38. Identification of the acid/base catalyst of a glycoside hydrolase family 3 (GH3) beta-glucosidase from Aspergillus niger ASKU28. Thongpoo P; McKee LS; Araújo AC; Kongsaeree PT; Brumer H Biochim Biophys Acta; 2013 Mar; 1830(3):2739-49. PubMed ID: 23201198 [TBL] [Abstract][Full Text] [Related]
39. Active-site architecture of benzoxazinone-glucoside β-D-glucosidases in Triticeae. Sue M; Nakamura C; Miyamoto T; Yajima S Plant Sci; 2011 Feb; 180(2):268-75. PubMed ID: 21421370 [TBL] [Abstract][Full Text] [Related]
40. Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus. Parry NJ; Beever DE; Owen E; Vandenberghe I; Van Beeumen J; Bhat MK Biochem J; 2001 Jan; 353(Pt 1):117-127. PubMed ID: 11115405 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]