These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 26790148)
41. Enhanced catalytic efficiency in quercetin-4'-glucoside hydrolysis of Thermotoga maritima β-glucosidase A by site-directed mutagenesis. Sun H; Xue Y; Lin Y J Agric Food Chem; 2014 Jul; 62(28):6763-70. PubMed ID: 24933681 [TBL] [Abstract][Full Text] [Related]
42. Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass. Treebupachatsakul T; Shioya K; Nakazawa H; Kawaguchi T; Morikawa Y; Shida Y; Ogasawara W; Okada H J Biosci Bioeng; 2015 Dec; 120(6):657-65. PubMed ID: 26026380 [TBL] [Abstract][Full Text] [Related]
43. Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study. Flannelly DF; Aoki TG; Aristilde L J Struct Biol; 2015 Sep; 191(3):352-64. PubMed ID: 26160737 [TBL] [Abstract][Full Text] [Related]
44. Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Kovács K; Szakacs G; Zacchi G Bioresour Technol; 2009 Feb; 100(3):1350-7. PubMed ID: 18793835 [TBL] [Abstract][Full Text] [Related]
45. Simultaneous enhancement of the beta-exo synergism and exo-exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability. Fang H; Zhao R; Li C; Zhao C Microb Cell Fact; 2019 Jan; 18(1):9. PubMed ID: 30657063 [TBL] [Abstract][Full Text] [Related]
46. Understanding the role of residues around the active site tunnel towards generating a glucose-tolerant β-glucosidase from Agrobacterium tumefaciens 5A. Goswami S; Das S; Datta S Protein Eng Des Sel; 2017 Jul; 30(7):523-530. PubMed ID: 28873987 [TBL] [Abstract][Full Text] [Related]
47. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Ma L; Zhang J; Zou G; Wang C; Zhou Z Enzyme Microb Technol; 2011 Sep; 49(4):366-71. PubMed ID: 22112562 [TBL] [Abstract][Full Text] [Related]
48. Enhancement in catalytic activity of Aspergillus niger XynB by selective site-directed mutagenesis of active site amino acids. Wu X; Tian Z; Jiang X; Zhang Q; Wang L Appl Microbiol Biotechnol; 2018 Jan; 102(1):249-260. PubMed ID: 29103167 [TBL] [Abstract][Full Text] [Related]
49. [Characterization and molecular modification of β-glucosidase from Citrobacter koser GXW-1]. Jiang M; Lin H; Yin J; Wang Z; Pang H; Huang R; Du L Wei Sheng Wu Xue Bao; 2017 Mar; 57(3):363-74. PubMed ID: 29756435 [TBL] [Abstract][Full Text] [Related]
50. Biochemical and proteomic characterization of a novel extracellular β-glucosidase from Trichoderma citrinoviride. Chandra M; Kalra A; Sangwan NS; Sangwan RS Mol Biotechnol; 2013 Mar; 53(3):289-99. PubMed ID: 22438061 [TBL] [Abstract][Full Text] [Related]
51. Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A. Wohlfahrt G; Pellikka T; Boer H; Teeri TT; Koivula A Biochemistry; 2003 Sep; 42(34):10095-103. PubMed ID: 12939137 [TBL] [Abstract][Full Text] [Related]
52. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi. MacLeod AM; Tull D; Rupitz K; Warren RA; Withers SG Biochemistry; 1996 Oct; 35(40):13165-72. PubMed ID: 8855954 [TBL] [Abstract][Full Text] [Related]
53. Three amino acid changes contribute markedly to the thermostability of β-glucosidase BglC from Thermobifida fusca. Pei XQ; Yi ZL; Tang CG; Wu ZL Bioresour Technol; 2011 Feb; 102(3):3337-42. PubMed ID: 21129951 [TBL] [Abstract][Full Text] [Related]
54. Substrate affinity and catalytic efficiency are improved by decreasing glycosylation sites in Trichoderma reesei cellobiohydrolase I expressed in Pichia pastoris. Ranaei Siadat SO; Mollasalehi H; Heydarzadeh N Biotechnol Lett; 2016 Mar; 38(3):483-8. PubMed ID: 26597709 [TBL] [Abstract][Full Text] [Related]
55. Characterization of a glucose tolerant β-glucosidase from Aspergillus unguis with high potential as a blend-in for biomass hydrolyzing enzyme cocktails. Kooloth Valappil P; Rajasree KP; Abraham A; Christopher M; Sukumaran RK Biotechnol Lett; 2019 Oct; 41(10):1201-1211. PubMed ID: 31489522 [TBL] [Abstract][Full Text] [Related]
56. Beta-glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. Zanoelo FF; Polizeli Mde L; Terenzi HF; Jorge JA FEMS Microbiol Lett; 2004 Nov; 240(2):137-43. PubMed ID: 15522500 [TBL] [Abstract][Full Text] [Related]
57. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme. Pellegrini VO; Serpa VI; Godoy AS; Camilo CM; Bernardes A; Rezende CA; Junior NP; Franco Cairo JP; Squina FM; Polikarpov I Appl Microbiol Biotechnol; 2015 Nov; 99(22):9591-604. PubMed ID: 26156238 [TBL] [Abstract][Full Text] [Related]
58. From in silico to in vitro: modelling and production of Trichoderma reesei endoglucanase 1 and its mutant in Pichia pastoris. Bayram Akcapinar G; Gul O; Sezerman UO J Biotechnol; 2012 May; 159(1-2):61-8. PubMed ID: 22426095 [TBL] [Abstract][Full Text] [Related]
59. Engineering of the Trichoderma reesei xylanase3 promoter for efficient enzyme expression. Hirasawa H; Shioya K; Furukawa T; Tani S; Sumitani JI; Kawaguchi T; Morikawa Y; Shida Y; Ogasawara W Appl Microbiol Biotechnol; 2018 Mar; 102(6):2737-2752. PubMed ID: 29417196 [TBL] [Abstract][Full Text] [Related]
60. Overexpression and characterization of a novel cold-adapted and salt-tolerant GH1 β-glucosidase from the marine bacterium Alteromonas sp. L82. Sun J; Wang W; Yao C; Dai F; Zhu X; Liu J; Hao J J Microbiol; 2018 Sep; 56(9):656-664. PubMed ID: 30141158 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]