These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 26790361)

  • 1. Prediction of particle deposition in the lungs based on simple modeling of alveolar mixing.
    Georgakakou S; Gourgoulianis K; Daniil Z; Bontozoglou V
    Respir Physiol Neurobiol; 2016 May; 225():8-18. PubMed ID: 26790361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow and particle dispersion in a pulmonary alveolus--part I: velocity measurements and convective particle transport.
    Chhabra S; Prasad AK
    J Biomech Eng; 2010 May; 132(5):051009. PubMed ID: 20459210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Airflow and Particle Deposition in a Human Acinar Region.
    Kolanjiyil AV; Kleinstreuer C
    Comput Math Methods Med; 2019; 2019():5952941. PubMed ID: 30755779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry.
    Oakes JM; Day S; Weinstein SJ; Robinson RJ
    J Biomech Eng; 2010 Feb; 132(2):021008. PubMed ID: 20370245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of alveolar topology on acinar flows and convective mixing.
    Hofemeier P; Sznitman J
    J Biomech Eng; 2014 Jun; 136(6):061007. PubMed ID: 24686842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of airway deformation and alveolar pores on particle deposition in the lungs.
    Jin Y; Cui H; Chen L; Sun K; Liu Z
    Sci Total Environ; 2022 Jul; 831():154931. PubMed ID: 35364181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree.
    Sznitman J; Heimsch T; Wildhaber JH; Tsuda A; Rösgen T
    J Biomech Eng; 2009 Mar; 131(3):031010. PubMed ID: 19154069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acinar flow irreversibility caused by perturbations in reversible alveolar wall motion.
    Tsuda A; Otani Y; Butler JP
    J Appl Physiol (1985); 1999 Mar; 86(3):977-84. PubMed ID: 10066713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravitational deposition in a rhythmically expanding and contracting alveolus.
    Haber S; Yitzhak D; Tsuda A
    J Appl Physiol (1985); 2003 Aug; 95(2):657-71. PubMed ID: 12639848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic simulation of alveolar particle deposition in lungs affected by different types of emphysema.
    Sturm R; Hofmann W
    J Aerosol Med; 2004; 17(4):357-72. PubMed ID: 15684735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaotic mixing deep in the lung.
    Tsuda A; Rogers RA; Hydon PE; Butler JP
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):10173-8. PubMed ID: 12119385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airflow and Particle Deposition in Acinar Models with Interalveolar Septal Walls and Different Alveolar Numbers.
    Xi J; Talaat M; Tanbour H; Talaat K
    Comput Math Methods Med; 2018; 2018():3649391. PubMed ID: 30356402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of peripheral airways for efficient gas exchange.
    Weibel ER; Sapoval B; Filoche M
    Respir Physiol Neurobiol; 2005 Aug; 148(1-2):3-21. PubMed ID: 15921964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Logistic trajectory maps and aerosol mixing due to asynchronous flow at airway bifurcations.
    Butler JP; Tsuda A
    Respir Physiol Neurobiol; 2005 Aug; 148(1-2):195-206. PubMed ID: 16002347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow in a terminal alveolar sac model with expanding walls using computational fluid dynamics.
    Harding EM; Robinson RJ
    Inhal Toxicol; 2010 Jul; 22(8):669-78. PubMed ID: 20462393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computer program for the simulation of fiber deposition in the human respiratory tract.
    Sturm R; Hofmann W
    Comput Biol Med; 2006 Nov; 36(11):1252-67. PubMed ID: 16212953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional convective alveolar flow induced by rhythmic breathing motion of the pulmonary acinus.
    Sznitman J; Heimsch F; Heimsch T; Rusch D; Rösgen T
    J Biomech Eng; 2007 Oct; 129(5):658-65. PubMed ID: 17887891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerosol transport and deposition in the rhythmically expanding pulmonary acinus.
    Tsuda A; Henry FS; Otani Y; Haber S; Butler JP
    J Aerosol Med; 1996; 9(3):389-408. PubMed ID: 10163663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of impact of gas molecular diffusion on nitric oxide expired profile.
    Van Muylem A; Noël C; Paiva M
    J Appl Physiol (1985); 2003 Jan; 94(1):119-27. PubMed ID: 12391109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical modeling of particle deposition in the alveolar region of the lungs: a basis for interspecies extrapolation.
    Asgharian B; Wood R; Schlesinger RB
    Fundam Appl Toxicol; 1995 Sep; 27(2):232-8. PubMed ID: 8529818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.