BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26790464)

  • 1. Bacterial and fungal colonization and decomposition of submerged plant litter: consequences for biogenic silica dissolution.
    Alfredsson H; Clymans W; Stadmark J; Conley D; Rousk J
    FEMS Microbiol Ecol; 2016 Mar; 92(3):. PubMed ID: 26790464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labile carbon 'primes' fungal use of nitrogen from submerged leaf litter.
    Soares M; Kritzberg ES; Rousk J
    FEMS Microbiol Ecol; 2017 Sep; 93(9):. PubMed ID: 28957586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial abundance and composition influence litter decomposition response to environmental change.
    Allison SD; Lu Y; Weihe C; Goulden ML; Martiny AC; Treseder KK; Martiny JB
    Ecology; 2013 Mar; 94(3):714-25. PubMed ID: 23687897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antagonism between bacteria and fungi on decomposing aquatic plant litter.
    Mille-Lindblom C; Tranvik LJ
    Microb Ecol; 2003 Feb; 45(2):173-82. PubMed ID: 12545315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh.
    Buesing N; Gessner MO
    Appl Environ Microbiol; 2006 Jan; 72(1):596-605. PubMed ID: 16391096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The soil bacterial and fungal diversity were determined by the stoichiometric ratios of litter inputs: evidence from a constructed wetland.
    Ping Y; Pan X; Li W; Wang J; Cui L
    Sci Rep; 2019 Sep; 9(1):13813. PubMed ID: 31554880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.
    Mora-Gómez J; Elosegi A; Duarte S; Cássio F; Pascoal C; Romaní AM
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27288197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid lipid nanoparticles affect microbial colonization and enzymatic activity throughout the decomposition of alder leaves in freshwater microcosms.
    Sampaio AC; Mendes RJ; Castro PG; Silva AM
    Ecotoxicol Environ Saf; 2017 Jan; 135():375-380. PubMed ID: 27776303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microbial contribution to litter decomposition and plant growth.
    Zhang C; de Pasquale S; Hartman K; Stanley CE; Berendsen RL; van der Heijden MGA
    Environ Microbiol Rep; 2024 Feb; 16(1):e13205. PubMed ID: 38018445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Links between plant and fungal diversity in habitat fragments of coastal shrubland.
    Maltz MR; Treseder KK; McGuire KL
    PLoS One; 2017; 12(9):e0184991. PubMed ID: 28926606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers.
    Kuehn KA; Francoeur SN; Findlay RH; Neely RK
    Ecology; 2014 Mar; 95(3):749-62. PubMed ID: 24804458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of elevated CO₂ and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants.
    Lee SH; Kim SY; Ding W; Kang H
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5295-305. PubMed ID: 25605423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition.
    Purahong W; Wubet T; Lentendu G; Schloter M; Pecyna MJ; Kapturska D; Hofrichter M; Krüger D; Buscot F
    Mol Ecol; 2016 Aug; 25(16):4059-74. PubMed ID: 27357176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river.
    Pascoal C; Cássio F
    Appl Environ Microbiol; 2004 Sep; 70(9):5266-73. PubMed ID: 15345409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region.
    Liu X; Zhang B; Zhao W; Wang L; Xie D; Huo W; Wu Y; Zhang J
    Sci Total Environ; 2017 Dec; 601-602():669-678. PubMed ID: 28577402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
    Mora-Gómez J; Duarte S; Cássio F; Pascoal C; Romaní AM
    Sci Total Environ; 2018 Apr; 621():486-496. PubMed ID: 29195197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant, fungal, bacterial, and nitrogen interactions in the litter layer of a native Patagonian forest.
    Vivanco L; Rascovan N; Austin AT
    PeerJ; 2018; 6():e4754. PubMed ID: 29770275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of norfloxacin on decomposition and nutrient release in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara.
    Zhao Y; Zhang S; Shu X; Yang Y; Li Y; Chen J; Pan Y; Sun S
    Environ Pollut; 2021 Apr; 274():116557. PubMed ID: 33529893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient enrichment in water more than in leaves affects aquatic microbial litter processing.
    Biasi C; Graça MAS; Santos S; Ferreira V
    Oecologia; 2017 Jun; 184(2):555-568. PubMed ID: 28421326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.