These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26790627)

  • 1. Metagenomic mining of glycoside hydrolases from the hindgut bacterial symbionts of a termite (Trinervitermes trinervoides) and the characterization of a multimodular β-1,4-xylanase (GH11).
    Rashamuse K; Sanyika Tendai W; Mathiba K; Ngcobo T; Mtimka S; Brady D
    Biotechnol Appl Biochem; 2017 Mar; 64(2):174-186. PubMed ID: 26790627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biophysical characterization of the multidomain xylanase Xyl.
    Anye V; Kruger RF; Schubert WD
    PLoS One; 2022; 17(6):e0269188. PubMed ID: 35657930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodularity of a GH10 Xylanase Found in the Termite Gut Metagenome.
    Wu H; Ioannou E; Henrissat B; Montanier CY; Bozonnet S; O'Donohue MJ; Dumon C
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33187992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of CBM36-containing GH11 endoxylanase NtSymX11 from the hindgut metagenome of higher termite Nasutitermes takasagoensis displaying prominent catalytic activity.
    Kitamoto M; Tokuda G; Watanabe H; Arioka M
    Carbohydr Res; 2019 Feb; 474():1-7. PubMed ID: 30665024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites.
    Tokuda G; Mikaelyan A; Fukui C; Matsuura Y; Watanabe H; Fujishima M; Brune A
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):E11996-E12004. PubMed ID: 30504145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of a glycoside hydrolase 29 family member from a rumen bacterium reveals unique, dual carbohydrate-binding domains.
    Summers EL; Moon CD; Atua R; Arcus VL
    Acta Crystallogr F Struct Biol Commun; 2016 Oct; 72(Pt 10):750-761. PubMed ID: 27710940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling Synergism between Various GH Family Xylanases and Debranching Enzymes during Hetero-Xylan Degradation.
    Malgas S; Mafa MS; Mathibe BN; Pletschke BI
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.
    Vardakou M; Dumon C; Murray JW; Christakopoulos P; Weiner DP; Juge N; Lewis RJ; Gilbert HJ; Flint JE
    J Mol Biol; 2008 Feb; 375(5):1293-305. PubMed ID: 18078955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GH115 α-glucuronidase and GH11 xylanase from Paenibacillus sp. JDR-2: potential roles in processing glucuronoxylans.
    Rhee MS; Sawhney N; Kim YS; Rhee HJ; Hurlbert JC; St John FJ; Nong G; Rice JD; Preston JF
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1465-1476. PubMed ID: 27766358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from Caldicellulosiruptor sp. strain F32 in thermostability and catalytic efficiency.
    Meng DD; Ying Y; Chen XH; Lu M; Ning K; Wang LS; Li FL
    Appl Environ Microbiol; 2015 Mar; 81(6):2006-14. PubMed ID: 25576604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases.
    Huang Y; Busk PK; Lange L
    Enzyme Microb Technol; 2015 Jun; 73-74():9-19. PubMed ID: 26002499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metagenomic insights into lignocellulose-degrading genes through Illumina-based de novo sequencing of the microbiome in Vietnamese native goats' rumen.
    Do TH; Le NG; Dao TK; Nguyen TMP; Le TL; Luu HL; Nguyen KHV; Nguyen VL; Le LA; Phung TN; van Straalen NM; Roelofs D; Truong NH
    J Gen Appl Microbiol; 2018 Jul; 64(3):108-116. PubMed ID: 29526926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota.
    Ni J; Tokuda G
    Biotechnol Adv; 2013 Nov; 31(6):838-50. PubMed ID: 23623853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase.
    McCleary BV; McKie VA; Draga A; Rooney E; Mangan D; Larkin J
    Carbohydr Res; 2015 Apr; 407():79-96. PubMed ID: 25723624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig-like domain.
    Han Q; Liu N; Robinson H; Cao L; Qian C; Wang Q; Xie L; Ding H; Wang Q; Huang Y; Li J; Zhou Z
    Biotechnol Bioeng; 2013 Dec; 110(12):3093-103. PubMed ID: 23794438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation.
    Kanokratana P; Eurwilaichitr L; Pootanakit K; Champreda V
    J Biosci Bioeng; 2015 Apr; 119(4):384-91. PubMed ID: 25441441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam.
    Do TH; Nguyen TT; Nguyen TN; Le QG; Nguyen C; Kimura K; Truong NH
    J Biosci Bioeng; 2014 Dec; 118(6):665-71. PubMed ID: 24928651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GH11 xylanases: Structure/function/properties relationships and applications.
    Paës G; Berrin JG; Beaugrand J
    Biotechnol Adv; 2012; 30(3):564-92. PubMed ID: 22067746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the alteration in rumen microbiome and CAZymes profile with diet and host through comparative metagenomic approach.
    Bohra V; Dafale NA; Purohit HJ
    Arch Microbiol; 2019 Dec; 201(10):1385-1397. PubMed ID: 31338542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi.
    Miao Y; Li P; Li G; Liu D; Druzhinina IS; Kubicek CP; Shen Q; Zhang R
    Environ Microbiol; 2017 Mar; 19(3):1054-1064. PubMed ID: 27878934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.