These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
456 related articles for article (PubMed ID: 26790775)
21. Graphene oxide: A growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Zhou M; Lozano N; Wychowaniec JK; Hodgkinson T; Richardson SM; Kostarelos K; Hoyland JA Acta Biomater; 2019 Sep; 96():271-280. PubMed ID: 31325577 [TBL] [Abstract][Full Text] [Related]
22. Synergistic Effect of Matrix Stiffness and Inflammatory Factors on Osteogenic Differentiation of MSC. Wan W; Cheng B; Zhang C; Ma Y; Li A; Xu F; Lin M Biophys J; 2019 Jul; 117(1):129-142. PubMed ID: 31178039 [TBL] [Abstract][Full Text] [Related]
23. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. Murphy CM; Duffy GP; Schindeler A; O'brien FJ J Biomed Mater Res A; 2016 Jan; 104(1):291-304. PubMed ID: 26386362 [TBL] [Abstract][Full Text] [Related]
24. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions. He XT; Wu RX; Xu XY; Wang J; Yin Y; Chen FM Acta Biomater; 2018 Apr; 71():132-147. PubMed ID: 29462712 [TBL] [Abstract][Full Text] [Related]
25. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering. Kim B; Ventura R; Lee BT J Tissue Eng Regen Med; 2018 Feb; 12(2):e1256-e1267. PubMed ID: 28752541 [TBL] [Abstract][Full Text] [Related]
26. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
27. 3D modular bioceramic scaffolds for the investigation of the interaction between osteosarcoma cells and MSCs. Hao J; Yu X; Tang K; Ma X; Lu H; Wu C Acta Biomater; 2024 Aug; 184():431-443. PubMed ID: 38897335 [TBL] [Abstract][Full Text] [Related]
28. In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina. Song Y; Ju Y; Song G; Morita Y Int J Nanomedicine; 2013; 8():2745-56. PubMed ID: 23935364 [TBL] [Abstract][Full Text] [Related]
29. Multicomponent hydrogels for the formation of vascularized bone-like constructs in vitro. Derkus B; Okesola BO; Barrett DW; D'Este M; Chowdhury TT; Eglin D; Mata A Acta Biomater; 2020 Jun; 109():82-94. PubMed ID: 32311533 [TBL] [Abstract][Full Text] [Related]
30. Strategies for the Codelivery of Osteoclasts and Mesenchymal Stem Cells in 3D-Printable Osteochondral Scaffolds. Jabari E; Choe RH; Kuzemchak B; Venable-Croft A; Choi JY; McLoughlin S; Packer JD; Fisher JP Tissue Eng Part C Methods; 2024 Aug; 30(8):323-334. PubMed ID: 39078319 [TBL] [Abstract][Full Text] [Related]
31. Benefits of biphasic calcium phosphate hybrid scaffold-driven osteogenic differentiation of mesenchymal stem cells through upregulated leptin receptor expression. Niu CC; Lin SS; Chen WJ; Liu SJ; Chen LH; Yang CY; Wang CJ; Yuan LJ; Chen PH; Cheng HY J Orthop Surg Res; 2015 Jul; 10():111. PubMed ID: 26179165 [TBL] [Abstract][Full Text] [Related]
32. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
33. Novel porous scaffolds of poly(lactic acid) produced by phase-separation using room temperature ionic liquid and the assessments of biocompatibility. Lee HY; Jin GZ; Shin US; Kim JH; Kim HW J Mater Sci Mater Med; 2012 May; 23(5):1271-9. PubMed ID: 22382734 [TBL] [Abstract][Full Text] [Related]
34. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity. Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841 [TBL] [Abstract][Full Text] [Related]
35. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis. Brennan CM; Eichholz KF; Hoey DA Biomed Mater; 2019 Nov; 14(6):065016. PubMed ID: 31574493 [TBL] [Abstract][Full Text] [Related]
36. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Wang H; Su K; Su L; Liang P; Ji P; Wang C Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109908. PubMed ID: 31499974 [TBL] [Abstract][Full Text] [Related]
37. Investigating the interplay between substrate stiffness and ligand chemistry in directing mesenchymal stem cell differentiation within 3D macro-porous substrates. Haugh MG; Vaughan TJ; Madl CM; Raftery RM; McNamara LM; O'Brien FJ; Heilshorn SC Biomaterials; 2018 Jul; 171():23-33. PubMed ID: 29677521 [TBL] [Abstract][Full Text] [Related]
38. Demineralized Bone Scaffolds with Tunable Matrix Stiffness for Efficient Bone Integration. Hu Q; Liu M; Chen G; Xu Z; Lv Y ACS Appl Mater Interfaces; 2018 Aug; 10(33):27669-27680. PubMed ID: 30063134 [TBL] [Abstract][Full Text] [Related]
39. Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties. Guneta V; Loh QL; Choong C J Biomed Mater Res A; 2016 May; 104(5):1090-101. PubMed ID: 26749566 [TBL] [Abstract][Full Text] [Related]
40. Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patient-tailored bone tissue engineering approach. Silva JC; Carvalho MS; Udangawa RN; Moura CS; Cabral JMS; L da Silva C; Ferreira FC; Vashishth D; Linhardt RJ J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2153-2166. PubMed ID: 31916699 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]