These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26790840)

  • 1. Bi-directional ACET micropump for on-chip biological applications.
    Vafaie RH; Ghavifekr HB; Van Lintel H; Brugger J; Renaud P
    Electrophoresis; 2016 Mar; 37(5-6):719-26. PubMed ID: 26790840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofluid pumping and mixing by an AC electrothermal micropump embedded with a spiral microelectrode pair in a cylindrical microchannel.
    Gao X; Li Y
    Electrophoresis; 2018 Dec; 39(24):3156-3170. PubMed ID: 30194859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AC electrothermal manipulation of conductive fluids and particles for lab-chip applications.
    Lian M; Islam N; Wu J
    IET Nanobiotechnol; 2007 Jun; 1(3):36-43. PubMed ID: 17506595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid mixing with high-throughput in a semi-active semi-passive micromixer.
    Kunti G; Bhattacharya A; Chakraborty S
    Electrophoresis; 2017 May; 38(9-10):1310-1317. PubMed ID: 28256732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
    Islam N; Reyna J
    Electrophoresis; 2012 Apr; 33(7):1191-7. PubMed ID: 22539322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced model-based design of a high-throughput three dimensional micromixer driven by alternating-current electrothermal flow.
    Wu Y; Ren Y; Jiang H
    Electrophoresis; 2017 Jan; 38(2):258-269. PubMed ID: 27387819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of pumping mechanism for non-Newtonian blood flow with AC electrothermal forces in a microchannel by hybrid boundary element method and immersed boundary-lattice Boltzmann method.
    Ren Q
    Electrophoresis; 2018 Jun; 39(11):1329-1338. PubMed ID: 29427440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally biased AC electrokinetic pumping effect for lab-on-a-chip based delivery of biofluids.
    Yuan Q; Wu J
    Biomed Microdevices; 2013 Feb; 15(1):125-33. PubMed ID: 22932955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications.
    Salari A; Navi M; Dalton C
    Biomicrofluidics; 2015 Jan; 9(1):014113. PubMed ID: 25713695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrothermal pumping with interdigitated electrodes and resistive heaters.
    Williams SJ; Green NG
    Electrophoresis; 2015 Aug; 36(15):1681-9. PubMed ID: 26010255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control.
    Studer V; Pepin A; Chen Y; Ajdari A
    Analyst; 2004 Oct; 129(10):944-9. PubMed ID: 15457328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes.
    Jang LS; Huang PH; Lan KC
    Biosens Bioelectron; 2009 Aug; 24(12):3637-44. PubMed ID: 19545991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical design of microfluidic-microelectric hybrid chip for the separation of biological cells.
    Ye T; Li H; Lam KY
    Langmuir; 2011 Mar; 27(6):3188-97. PubMed ID: 21332176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device.
    Justin G; Nasir M; Ligler FS
    Anal Bioanal Chem; 2011 May; 400(5):1347-58. PubMed ID: 21448604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Pumping and Mixing of Biological Fluids in a Double-Array Electrothermal Microfluidic Device.
    Salari A; Dalton C
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30696037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AC Electrothermal Circulatory Pumping Chip for Cell Culture.
    Lang Q; Wu Y; Ren Y; Tao Y; Lei L; Jiang H
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26792-801. PubMed ID: 26558750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal design of microgrooved channels with electrokinetic pumping for lab-on-a-chip applications.
    Du E; Manoochehri S
    IET Nanobiotechnol; 2010 Jun; 4(2):40-9. PubMed ID: 20499997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining.
    Zeinali S; Çetin B; Oliaei SN; Karpat Y
    Electrophoresis; 2015 Jul; 36(13):1432-42. PubMed ID: 25808433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the Slip Velocity Effect in an AC Electrothermal Micropump.
    Echouchene F; Al-Shahrani T; Belmabrouk H
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32878031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.