These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26791212)

  • 1. Manipulating Decisiveness in Decision Making: Effects of Clonidine on Hippocampal Search Strategies.
    Amemiya S; Redish AD
    J Neurosci; 2016 Jan; 36(3):814-27. PubMed ID: 26791212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noradrenergic signaling in the medial prefrontal cortex and amygdala differentially regulates vicarious trial-and-error in a spatial decision-making task.
    Amemiya S; Kubota N; Umeyama N; Nishijima T; Kita I
    Behav Brain Res; 2016 Jan; 297():104-11. PubMed ID: 26341318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noradrenergic modulation of vicarious trial-and-error behavior during a spatial decision-making task in rats.
    Amemiya S; Noji T; Kubota N; Nishijima T; Kita I
    Neuroscience; 2014 Apr; 265():291-301. PubMed ID: 24480363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conflict between place and response navigation strategies: effects on vicarious trial and error (VTE) behaviors.
    Schmidt B; Papale A; Redish AD; Markus EJ
    Learn Mem; 2013 Feb; 20(3):130-8. PubMed ID: 23418392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point.
    Johnson A; Redish AD
    J Neurosci; 2007 Nov; 27(45):12176-89. PubMed ID: 17989284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pharmacological manipulations of NMDA-receptors on deliberation in the Multiple-T task.
    Blumenthal A; Steiner A; Seeland K; Redish AD
    Neurobiol Learn Mem; 2011 Mar; 95(3):376-84. PubMed ID: 21296174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hippocampal α-adrenoceptors involve in the effect of histamine on spatial learning.
    Torkaman-Boutorabi A; Danyali F; Oryan S; Ebrahimi-Ghiri M; Zarrindast MR
    Physiol Behav; 2014 Apr; 129():17-24. PubMed ID: 24534171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noradrenergic modulation of risk/reward decision making.
    Montes DR; Stopper CM; Floresco SB
    Psychopharmacology (Berl); 2015 Aug; 232(15):2681-96. PubMed ID: 25761840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vicarious trial and error.
    Redish AD
    Nat Rev Neurosci; 2016 Mar; 17(3):147-59. PubMed ID: 26891625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vicarious trial-and-error behavior and hippocampal cytochrome oxidase activity during Y-maze discrimination learning in the rat.
    Hu D; Xu X; Gonzalez-Lima F
    Int J Neurosci; 2006 Mar; 116(3):265-80. PubMed ID: 16484053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dorsal, but not ventral, hippocampal inactivation alters deliberation in rats.
    Meyer-Mueller C; Jacob PY; Montenay JY; Poitreau J; Poucet B; Chaillan FA
    Behav Brain Res; 2020 Jul; 390():112622. PubMed ID: 32417276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between Hippocampal Sharp-Wave-Ripple Events and Vicarious Trial and Error Behaviors in Decision Making.
    Papale AE; Zielinski MC; Frank LM; Jadhav SP; Redish AD
    Neuron; 2016 Dec; 92(5):975-982. PubMed ID: 27866796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decision time and perseveration of adolescent rats in the T-maze are affected differentially by buspirone and independent of 5-HT-1A expression.
    Rhoads DE; Grimes N; Kaushal S; Mallari J; Orlando K
    Pharmacol Biochem Behav; 2012 Jul; 102(1):58-63. PubMed ID: 22494991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress drives deliberative tendencies by influencing vicarious trial and error in decision making.
    Amemiya S; Ishida M; Kubota N; Nishijima T; Kita I
    Neurobiol Learn Mem; 2020 Oct; 174():107276. PubMed ID: 32693161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of postsynapse adrenergic α2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder.
    Kawaura K; Karasawa J; Chaki S; Hikichi H
    Behav Brain Res; 2014 Aug; 270():349-56. PubMed ID: 24882610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of vicarious trial-and-error behavior in odor discrimination learning in the rat: relation to hippocampal function?
    Hu D; Griesbach G; Amsel A
    Behav Brain Res; 1997 Jun; 86(1):67-70. PubMed ID: 9105583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual contributions of noradrenaline to behavioural flexibility and motivation.
    Jahn CI; Gilardeau S; Varazzani C; Blain B; Sallet J; Walton ME; Bouret S
    Psychopharmacology (Berl); 2018 Sep; 235(9):2687-2702. PubMed ID: 29998349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avoid-approach conflict behaviors differentially affected by anxiolytics: implications for a computational model of risky decision-making.
    Walters CJ; Jubran J; Sheehan A; Erickson MT; Redish AD
    Psychopharmacology (Berl); 2019 Aug; 236(8):2513-2525. PubMed ID: 30863879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between deliberation and delay-discounting in rats.
    Papale AE; Stott JJ; Powell NJ; Regier PS; Redish AD
    Cogn Affect Behav Neurosci; 2012 Sep; 12(3):513-26. PubMed ID: 22588853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Memory of a drug lapse: Role of noradrenaline.
    Cummins Jacklin E; Boughner E; Kent K; Kwiatkowski D; MacDonald T; Leri F
    Neuropharmacology; 2015 Dec; 99():98-105. PubMed ID: 26192542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.