These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 26791328)
41. Designing porosity and topography of poly(1,3-trimethylene carbonate) scaffolds. Papenburg BJ; Schüller-Ravoo S; Bolhuis-Versteeg LA; Hartsuiker L; Grijpma DW; Feijen J; Wessling M; Stamatialis D Acta Biomater; 2009 Nov; 5(9):3281-94. PubMed ID: 19463974 [TBL] [Abstract][Full Text] [Related]
42. Tacticity-induced changes in the micellization and degradation properties of poly(lactic acid)-block-poly(ethylene glycol) copolymers. Agatemor C; Shaver MP Biomacromolecules; 2013 Mar; 14(3):699-708. PubMed ID: 23402292 [TBL] [Abstract][Full Text] [Related]
43. The effect of poly(trimethylene carbonate) molecular weight on macrophage behavior and enzyme adsorption and conformation. Vyner MC; Li A; Amsden BG Biomaterials; 2014 Nov; 35(33):9041-8. PubMed ID: 25109440 [TBL] [Abstract][Full Text] [Related]
44. Intermolecular interaction and morphology investigation of drug loaded ABA-triblock copolymers with different hydrophilic/lipophilic ratios. Khoee S; Rahimi HB Bioorg Med Chem; 2010 Oct; 18(20):7283-90. PubMed ID: 20833053 [TBL] [Abstract][Full Text] [Related]
45. Synthesis of amphiphilic tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization directly initiating from cyclic precursors and their application as drug nanocarriers. Wan X; Liu T; Liu S Biomacromolecules; 2011 Apr; 12(4):1146-54. PubMed ID: 21332208 [TBL] [Abstract][Full Text] [Related]
46. Degradation behavior of, and tissue response to photo-crosslinked poly(trimethylene carbonate) networks. Rongen JJ; van Bochove B; Hannink G; Grijpma DW; Buma P J Biomed Mater Res A; 2016 Nov; 104(11):2823-32. PubMed ID: 27392321 [TBL] [Abstract][Full Text] [Related]
47. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. Sanson C; Diou O; Thévenot J; Ibarboure E; Soum A; Brûlet A; Miraux S; Thiaudière E; Tan S; Brisson A; Dupuis V; Sandre O; Lecommandoux S ACS Nano; 2011 Feb; 5(2):1122-40. PubMed ID: 21218795 [TBL] [Abstract][Full Text] [Related]
48. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers. Díaz A; Del Valle L; Franco L; Sarasua JR; Estrany F; Puiggalí J Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():517-28. PubMed ID: 25063149 [TBL] [Abstract][Full Text] [Related]
49. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Sun TM; Du JZ; Yan LF; Mao HQ; Wang J Biomaterials; 2008 Nov; 29(32):4348-55. PubMed ID: 18715636 [TBL] [Abstract][Full Text] [Related]
50. Synthesis and characterization of biodegradable poly(ethylene glycol)-block-poly(5-benzyloxy-trimethylene carbonate) copolymers for drug delivery. Zeng F; Liu J; Allen C Biomacromolecules; 2004; 5(5):1810-7. PubMed ID: 15360292 [TBL] [Abstract][Full Text] [Related]
51. Tandem metal-coordination copolymerization and organocatalytic ring-opening polymerization via water to synthesize diblock copolymers of styrene oxide/CO2 and lactide. Wu GP; Darensbourg DJ; Lu XB J Am Chem Soc; 2012 Oct; 134(42):17739-45. PubMed ID: 23016983 [TBL] [Abstract][Full Text] [Related]
52. Micelles based on amphiphilic PCL-PEO triblock and star-shaped diblock copolymers: Potential in drug delivery applications. Quaglia F; Ostacolo L; Nese G; Canciello M; De Rosa G; Ungaro F; Palumbo R; La Rotonda MI; Maglio G J Biomed Mater Res A; 2008 Dec; 87(3):563-74. PubMed ID: 18186051 [TBL] [Abstract][Full Text] [Related]
53. Amphiphilic chitosan-g-poly(trimethylene carbonate) - A new approach for biomaterials design. Andreica BI; Ailincai D; Sandu AI; Marin L Int J Biol Macromol; 2021 Dec; 193(Pt A):414-424. PubMed ID: 34715200 [TBL] [Abstract][Full Text] [Related]
55. The use of cholesterol-containing biodegradable block copolymers to exploit hydrophobic interactions for the delivery of anticancer drugs. Lee AL; Venkataraman S; Sirat SB; Gao S; Hedrick JL; Yang YY Biomaterials; 2012 Feb; 33(6):1921-8. PubMed ID: 22137125 [TBL] [Abstract][Full Text] [Related]
56. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Zhang Z; Kuijer R; Bulstra SK; Grijpma DW; Feijen J Biomaterials; 2006 Mar; 27(9):1741-8. PubMed ID: 16221493 [TBL] [Abstract][Full Text] [Related]
57. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Wang F; Li Z; Lannutti JL; Wagner WR; Guan J Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136 [TBL] [Abstract][Full Text] [Related]
58. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response. Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255 [TBL] [Abstract][Full Text] [Related]
59. Resilient bioresorbable copolymers based on trimethylene carbonate, L-lactide, and 1,5-dioxepan-2-one. Andronova N; Albertsson AC Biomacromolecules; 2006 May; 7(5):1489-95. PubMed ID: 16677030 [TBL] [Abstract][Full Text] [Related]
60. Study on poly(L-lactide-co-trimethylene carbonate): synthesis and cell compatibility of electrospun film. Ji LJ; Lai KL; He B; Wang G; Song LQ; Wu Y; Gu ZW Biomed Mater; 2010 Aug; 5(4):045009. PubMed ID: 20644241 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]