These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 26791497)
1. Sample Preparation for Fungal Community Analysis by High-Throughput Sequencing of Barcode Amplicons. Clemmensen KE; Ihrmark K; Durling MB; Lindahl BD Methods Mol Biol; 2016; 1399():61-88. PubMed ID: 26791497 [TBL] [Abstract][Full Text] [Related]
2. Sample Preparation for Fungal Community Analysis by High-Throughput Sequencing of Barcode Amplicons. Clemmensen KE; Ihrmark K; Durling MB; Lindahl BD Methods Mol Biol; 2023; 2605():37-64. PubMed ID: 36520388 [TBL] [Abstract][Full Text] [Related]
3. Different Amplicon Targets for Sequencing-Based Studies of Fungal Diversity. De Filippis F; Laiola M; Blaiotta G; Ercolini D Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625991 [TBL] [Abstract][Full Text] [Related]
4. Metataxonomic comparison between internal transcribed spacer and 26S ribosomal large subunit (LSU) rDNA gene. Mota-Gutierrez J; Ferrocino I; Rantsiou K; Cocolin L Int J Food Microbiol; 2019 Feb; 290():132-140. PubMed ID: 30340111 [TBL] [Abstract][Full Text] [Related]
5. Quantifying Trade-Offs in the Choice of Ribosomal Barcoding Markers for Fungal Amplicon Sequencing: a Case Study on the Grapevine Trunk Mycobiome. Monod V; Hofstetter V; Zufferey V; Viret O; Gindro K; Croll D Microbiol Spectr; 2022 Dec; 10(6):e0251322. PubMed ID: 36409146 [TBL] [Abstract][Full Text] [Related]
6. Assessment of Passive Traps Combined with High-Throughput Sequencing To Study Airborne Fungal Communities. Aguayo J; Fourrier-Jeandel C; Husson C; Ioos R Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572213 [TBL] [Abstract][Full Text] [Related]
7. Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community. Li S; Deng Y; Wang Z; Zhang Z; Kong X; Zhou W; Yi Y; Qu Y Mol Ecol Resour; 2020 Jan; 20(1):170-184. PubMed ID: 31599091 [TBL] [Abstract][Full Text] [Related]
8. An improved high throughput sequencing method for studying oomycete communities. Sapkota R; Nicolaisen M J Microbiol Methods; 2015 Mar; 110():33-9. PubMed ID: 25602160 [TBL] [Abstract][Full Text] [Related]
9. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Schoch CL; Seifert KA; Huhndorf S; Robert V; Spouge JL; Levesque CA; Chen W; ; Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6241-6. PubMed ID: 22454494 [TBL] [Abstract][Full Text] [Related]
10. DNA metabarcoding to assess indoor fungal communities: Electrostatic dust collectors and Illumina sequencing. Rocchi S; Valot B; Reboux G; Millon L J Microbiol Methods; 2017 Aug; 139():107-112. PubMed ID: 28559161 [TBL] [Abstract][Full Text] [Related]
11. High-throughput Sequencing of Trace Quantities of Soil Provides Reproducible and Discriminative Fungal DNA Profiles. Young JM; Weyrich LS; Cooper A J Forensic Sci; 2016 Mar; 61(2):478-484. PubMed ID: 27404621 [TBL] [Abstract][Full Text] [Related]
12. Effort versus Reward: Preparing Samples for Fungal Community Characterization in High-Throughput Sequencing Surveys of Soils. Song Z; Schlatter D; Kennedy P; Kinkel LL; Kistler HC; Nguyen N; Bates ST PLoS One; 2015; 10(5):e0127234. PubMed ID: 25974078 [TBL] [Abstract][Full Text] [Related]
13. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. Op De Beeck M; Lievens B; Busschaert P; Declerck S; Vangronsveld J; Colpaert JV PLoS One; 2014; 9(6):e97629. PubMed ID: 24933453 [TBL] [Abstract][Full Text] [Related]
14. New Primers for Discovering Fungal Diversity Using Nuclear Large Ribosomal DNA. Asemaninejad A; Weerasuriya N; Gloor GB; Lindo Z; Thorn RG PLoS One; 2016; 11(7):e0159043. PubMed ID: 27391306 [TBL] [Abstract][Full Text] [Related]
15. Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem. Brown SP; Callaham MA; Oliver AK; Jumpponen A FEMS Microbiol Ecol; 2013 Dec; 86(3):557-66. PubMed ID: 23869991 [TBL] [Abstract][Full Text] [Related]
16. Long- and short-read metabarcoding technologies reveal similar spatiotemporal structures in fungal communities. Furneaux B; Bahram M; Rosling A; Yorou NS; Ryberg M Mol Ecol Resour; 2021 Aug; 21(6):1833-1849. PubMed ID: 33811446 [TBL] [Abstract][Full Text] [Related]
17. DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy. Banchi E; Ametrano CG; Stanković D; Verardo P; Moretti O; Gabrielli F; Lazzarin S; Borney MF; Tassan F; Tretiach M; Pallavicini A; Muggia L PLoS One; 2018; 13(3):e0194489. PubMed ID: 29558527 [TBL] [Abstract][Full Text] [Related]
18. Introducing ribosomal tandem repeat barcoding for fungi. Wurzbacher C; Larsson E; Bengtsson-Palme J; Van den Wyngaert S; Svantesson S; Kristiansson E; Kagami M; Nilsson RH Mol Ecol Resour; 2019 Jan; 19(1):118-127. PubMed ID: 30240145 [TBL] [Abstract][Full Text] [Related]
19. EnsembleSeq: a workflow towards real-time, rapid, and simultaneous multi-kingdom-amplicon sequencing for holistic and resource-effective microbiome research at scale. Nagpal S; Mande SS; Hooda H; Dutta U; Taneja B Microbiol Spectr; 2024 Jun; 12(6):e0415023. PubMed ID: 38687072 [TBL] [Abstract][Full Text] [Related]
20. Genotypic Identification of Trees Using DNA Barcodes and Microbiome Analysis of Rhizosphere Microbial Communities. Hopkins L; Yim K; Rumora A; Baykus MF; Martinez L; Jimenez L Genes (Basel); 2024 Jul; 15(7):. PubMed ID: 39062644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]