These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26791498)

  • 21. Long-Term Enrichment of Stress-Tolerant Cellulolytic Soil Populations following Timber Harvesting Evidenced by Multi-Omic Stable Isotope Probing.
    Wilhelm RC; Cardenas E; Leung H; Szeitz A; Jensen LD; Mohn WW
    Front Microbiol; 2017; 8():537. PubMed ID: 28443069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment.
    Eyice Ö; Namura M; Chen Y; Mead A; Samavedam S; Schäfer H
    ISME J; 2015 Nov; 9(11):2336-48. PubMed ID: 25822481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of fungal cellobiohydrolase I genes from sporocarps and forest soils by PCR.
    Edwards IP; Upchurch RA; Zak DR
    Appl Environ Microbiol; 2008 Jun; 74(11):3481-9. PubMed ID: 18408067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi.
    Setälä H; McLean MA
    Oecologia; 2004 Mar; 139(1):98-107. PubMed ID: 14740289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of Active Methylotrophic Communities: When DNA-SIP Meets High-Throughput Technologies.
    Taubert M; Grob C; Howat AM; Burns OJ; Chen Y; Neufeld JD; Murrell JC
    Methods Mol Biol; 2016; 1399():235-55. PubMed ID: 26791507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable isotope probing to study functional components of complex microbial ecosystems.
    Mazard S; Schäfer H
    Methods Mol Biol; 2014; 1096():169-80. PubMed ID: 24515369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Applications and perspectives of DNA stable-isotope probing in metagenomics: a review].
    Liu W; Wei X; Yuan J; Huang L
    Sheng Wu Gong Cheng Xue Bao; 2011 Apr; 27(4):539-45. PubMed ID: 21847987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted metagenomics of active microbial populations with stable-isotope probing.
    Coyotzi S; Pratscher J; Murrell JC; Neufeld JD
    Curr Opin Biotechnol; 2016 Oct; 41():1-8. PubMed ID: 26946369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of cellulolytic bacteria in soil by stable isotope probing.
    Haichar FZ; Achouak W; Christen R; Heulin T; Marol C; Marais MF; Mougel C; Ranjard L; Balesdent J; Berge O
    Environ Microbiol; 2007 Mar; 9(3):625-34. PubMed ID: 17298363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable-Isotope Probing RNA to Study Plant/Fungus Interactions.
    Lê Van A; Duhamel M; Quaiser A; Vandenkoornhuyse P
    Methods Mol Biol; 2016; 1399():151-66. PubMed ID: 26791502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. When metagenomics meets stable-isotope probing: progress and perspectives.
    Chen Y; Murrell JC
    Trends Microbiol; 2010 Apr; 18(4):157-63. PubMed ID: 20202846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stable isotope switching (SIS): a new stable isotope probing (SIP) approach to determine carbon flow in the soil food web and dynamics in organic matter pools.
    Maxfield PJ; Dildar N; Hornibrook ER; Stott AW; Evershed RP
    Rapid Commun Mass Spectrom; 2012 Apr; 26(8):997-1004. PubMed ID: 22396038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP).
    Jiang B; Jin N; Xing Y; Su Y; Zhang D
    Crit Rev Biotechnol; 2018 Nov; 38(7):1025-1048. PubMed ID: 29385846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms.
    Jameson E; Taubert M; Angel R; Coyotzi S; Chen Y; Eyice Ö; Schäfer H; Murrell JC; Neufeld JD; Dumont MG
    Methods Mol Biol; 2023; 2555():261-282. PubMed ID: 36306091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions.
    Griepentrog M; Bodé S; Boeckx P; Hagedorn F; Heim A; Schmidt MW
    Glob Chang Biol; 2014 Jan; 20(1):327-40. PubMed ID: 23996910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Captured metagenomics: large-scale targeting of genes based on 'sequence capture' reveals functional diversity in soils.
    Manoharan L; Kushwaha SK; Hedlund K; Ahrén D
    DNA Res; 2015 Dec; 22(6):451-60. PubMed ID: 26490729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A culture-independent study of free-living fungi in biological soil crusts of the Colorado Plateau: their diversity and relative contribution to microbial biomass.
    Bates ST; Garcia-Pichel F
    Environ Microbiol; 2009 Jan; 11(1):56-67. PubMed ID: 18764875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem.
    Lipson DA; Kuske CR; Gallegos-Graves LV; Oechel WC
    Glob Chang Biol; 2014 Aug; 20(8):2555-65. PubMed ID: 24753089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Species abundance distributions and richness estimations in fungal metagenomics--lessons learned from community ecology.
    Unterseher M; Jumpponen A; Opik M; Tedersoo L; Moora M; Dormann CF; Schnittler M
    Mol Ecol; 2011 Jan; 20(2):275-85. PubMed ID: 21155911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of metatranscriptomics to soil environments.
    Carvalhais LC; Dennis PG; Tyson GW; Schenk PM
    J Microbiol Methods; 2012 Nov; 91(2):246-51. PubMed ID: 22963791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.