BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26791532)

  • 1. Tissue-of-origin-specific gene repositioning in breast and prostate cancer.
    Meaburn KJ; Agunloye O; Devine M; Leshner M; Roloff GW; True LD; Misteli T
    Histochem Cell Biol; 2016 Apr; 145(4):433-46. PubMed ID: 26791532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locus-specific gene repositioning in prostate cancer.
    Leshner M; Devine M; Roloff GW; True LD; Misteli T; Meaburn KJ
    Mol Biol Cell; 2016 Jan; 27(2):236-46. PubMed ID: 26564800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locus-specific and activity-independent gene repositioning during early tumorigenesis.
    Meaburn KJ; Misteli T
    J Cell Biol; 2008 Jan; 180(1):39-50. PubMed ID: 18195100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disease-specific gene repositioning in breast cancer.
    Meaburn KJ; Gudla PR; Khan S; Lockett SJ; Misteli T
    J Cell Biol; 2009 Dec; 187(6):801-12. PubMed ID: 19995938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic associations of breast and prostate cancer are enriched for regulatory elements identified in disease-related tissues.
    Chen H; Kichaev G; Bien SA; MacDonald JW; Wang L; Bammler TK; Auer P; Pasaniuc B; Lindström S
    Hum Genet; 2019 Oct; 138(10):1091-1104. PubMed ID: 31230194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer.
    Savinainen KJ; Linja MJ; Saramäki OR; Tammela TL; Chang GT; Brinkmann AO; Visakorpi T
    Br J Cancer; 2004 Mar; 90(5):1041-6. PubMed ID: 14997205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the Utility of Gene Positioning Biomarkers in the Stratification of Prostate Cancers.
    Meaburn KJ; Misteli T
    Front Genet; 2019; 10():1029. PubMed ID: 31681438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A widely expressed transcription factor with multiple DNA sequence specificity, CTCF, is localized at chromosome segment 16q22.1 within one of the smallest regions of overlap for common deletions in breast and prostate cancers.
    Filippova GN; Lindblom A; Meincke LJ; Klenova EM; Neiman PE; Collins SJ; Doggett NA; Lobanenkov VV
    Genes Chromosomes Cancer; 1998 May; 22(1):26-36. PubMed ID: 9591631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase of GKLF messenger RNA and protein expression during progression of breast cancer.
    Foster KW; Frost AR; McKie-Bell P; Lin CY; Engler JA; Grizzle WE; Ruppert JM
    Cancer Res; 2000 Nov; 60(22):6488-95. PubMed ID: 11103818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific spatial organization of genomes.
    Parada LA; McQueen PG; Misteli T
    Genome Biol; 2004; 5(7):R44. PubMed ID: 15239829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits.
    Rhie SK; Guo Y; Tak YG; Yao L; Shen H; Coetzee GA; Laird PW; Farnham PJ
    Epigenetics Chromatin; 2016; 9():50. PubMed ID: 27833659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common gene pathways and families altered by DNA methylation in breast and prostate cancers.
    Day TK; Bianco-Miotto T
    Endocr Relat Cancer; 2013 Oct; 20(5):R215-32. PubMed ID: 23818572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The novel human MOST-1 (C8orf17) gene exhibits tissue specific expression, maps to chromosome 8q24.2, and is overexpressed/amplified in high grade cancers of the breast and prostate.
    Tan JM; Tock EP; Chow VT
    Mol Pathol; 2003 Apr; 56(2):109-15. PubMed ID: 12665628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and functional characterization of a human GalNAc [alpha]2,6-sialyltransferase with altered expression in breast cancer.
    Sotiropoulou G; Kono M; Anisowicz A; Stenman G; Tsuji S; Sager R
    Mol Med; 2002 Jan; 8(1):42-55. PubMed ID: 11984005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in gene expression in prostate cancer, normal appearing prostate tissue adjacent to cancer and prostate tissue from cancer free organ donors.
    Chandran UR; Dhir R; Ma C; Michalopoulos G; Becich M; Gilbertson J
    BMC Cancer; 2005 May; 5():45. PubMed ID: 15892885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AKT-1, -2, and -3 are expressed in both normal and tumor tissues of the lung, breast, prostate, and colon.
    Zinda MJ; Johnson MA; Paul JD; Horn C; Konicek BW; Lu ZH; Sandusky G; Thomas JE; Neubauer BL; Lai MT; Graff JR
    Clin Cancer Res; 2001 Aug; 7(8):2475-9. PubMed ID: 11489829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association between methylation of SHP-1 isoform I and SSTR2A promoter regions with breast and prostate carcinoma development.
    Tiscornia MM; González HS; Lorenzati MA; Zapata PD
    Cancer Invest; 2015 Mar; 33(3):61-9. PubMed ID: 25635370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer.
    Chen HR; Sherr DH; Hu Z; DeLisi C
    BMC Med Genomics; 2016 Jul; 9(1):51. PubMed ID: 27475327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular alterations in AKT1, AKT2 and AKT3 detected in breast and prostatic cancer by FISH.
    Kirkegaard T; Witton CJ; Edwards J; Nielsen KV; Jensen LB; Campbell FM; Cooke TG; Bartlett JM
    Histopathology; 2010 Jan; 56(2):203-11. PubMed ID: 20102399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HER-2/neu gene amplification status in prostate cancer by fluorescence in situ hybridization.
    Ross JS; Sheehan C; Hayner-Buchan AM; Ambros RA; Kallakury BV; Kaufman R; Fisher HA; Muraca PJ
    Hum Pathol; 1997 Jul; 28(7):827-33. PubMed ID: 9224752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.